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Abstract 

 This research study describes progress made during a multi-year evaluation of concepts 

to prevent vehicles from departing the roadway. The objective of the Year 3 effort was to 

conclude the development of a dynamically-concise map framework for guiding connected and 

automated vehicles equipped with necessary hardware to identify the vehicle’s current position 

and heading, and react to current and upcoming lane geometry to ensure continued safe travel.  

 The method is separated into three main modules denoted as: Local Path Generation, 

Local Positioning, and Vehicle Guidance/Warning. The Local Path Generation module explored 

techniques to wirelessly convey road data to a vehicle while requiring a very low quantity and 

frequency of data exchange between the vehicle and the environment. The guidance information 

is collected to develop a local road database and referenced locally, geospatially, and relative to 

other adjacent road segments. As well, the vehicle instantaneous position is identified using the 

Local Positioning module, in which the coordinates of the vehicle can be quickly related in terms 

of position, speed, and orientation with respect to the roadway with minimal lag. The Vehicle 

Guidance System module is the reaction system which compares data from Local Path 

Generation and Local Positioning modules to determine if the risk of roadside departure exceeds 

an unacceptable level of risk, and responds by notifying the driver and/or performing safety 

maneuvers to control the vehicle path. Feasibility and application of these modules and concepts 

were explored and further research recommendations were provided for the third and final year 

of MATC funding. 
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Chapter 1 Introduction 

1.1 Problem Statement 

 The Federal Highway Administration (FHWA) reported that approximately 53% of fatal 

crashes (18,779) between 2014 and 2016 were related to roadside departures or lane departures 

[1]. According to the National Highway Traffic Safety Administration (NHTSA) Fatal Accident 

Reporting System (FARS) statistics [2] and the Insurance Institute for Highway Safety (IIHS) 

and Highway Loss Data Institute (HLDI) annual compilations [3], approximately 10,000 fatal 

run-off-road (ROR) crashes occur each year involving roadside fixed objects. As a result, ROR 

fixed-object fatal crashes account for approximately 1/3 of all fatal crashes. Cross-median 

crashes are among the most deadly type of ROR crash, in which a vehicle exits the travel-way 

and crosses a median, striking an opposing vehicle from the opposite travel direction. 

 Non-fatal ROR crashes are also concerning and economically devastating. Research 

conducted at the University of Nebraska-Lincoln identified approximately 440,000 crashes 

involving only roadside trees and utility poles in a five-year period spanning twelve 

geographically dissimilar states [4]. It was determined that the United States experiences an 

estimated $13 to 17 billion in direct (emergency medical services, first responders, cleanup, 

infrastructure repairs) and indirect costs (traffic congestion, loss of workdays and taxable 

income, incapacitation, lawsuits) related only to non-fatal roadside tree and utility pole crashes 

every year. The crashes reviewed indicated that many ROR crashes exhibit similar attributes:  

• Drift-Off Road: vehicle slowly departs roadway (typically at a small angle of departure 

and straight-line trajectory). This condition is most commonly associated with drowsy or 

impaired drivers, or drivers with medical episodes. 
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• Overcorrection: the vehicle experiences a path change (drift out of lane, lane change, 

avoidance maneuver), then the driver overcompensates and over-steers while attempting 

to guide the vehicle back to the desired lane. This roadside departure type commonly 

results in spinout and skidding. 

• Failure to Negotiate Curve: vehicle veers to the outside of a curve. Condition is 

frequently associated with high travel speeds or poor pavement friction (e.g., ice). 

• Avoidance Maneuver: vehicle performs evasive maneuver to avoid crashing into an 

object, person, or animal in lane. This roadside departure condition is commonly 

associated with higher travel speeds (e.g., freeway), and is abrupt and panicked. 

 

 

Figure 1.1 Examples of ROR Crashes (images take from NHTSA’s NASS CDS) 
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1.2 Current Technology Review 

 New technology is installed in modern vehicles to help reduce the frequency of ROR 

excursions. Advanced driver-assistance systems (ADAS) assist the driver by identifying the 

geometry of the road using lane markings to help keep the driver on the road [5-7]. 

 The use of ADAS technology has been augmented through wireless communications. 

Leading to different schemes such as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure 

(V2I). These vehicles with wireless capacities are denoted as Connected and Autonomous 

Vehicles (CAVs). In recent years, V2I communications with CAVs have been used to provide 

traffic flow data to vehicles that comes from a station monitoring current state of traffic of a 

given area. As of today, this technology is still in development and being tested by Departments 

of Transportation (DOTs) and research agencies. 

 According to SAE Recommended Practice J306 2018, CAVs can be classified into 

different levels of autonomy [8]. These levels are based on the amount of Dynamic Driving 

Tasks (DDTs) a vehicle can perform. DDTs are classified into Longitudinal DDTs and Lateral 

DDTs: 

• Longitudinal DDT: Controlling the brake and throttle to achieve the desired forward 

vehicle travel behavior.  

• Lateral DDT: Maintaining a desired vehicle travel direction by modulating braking and 

steering that range from simple guidance on the road and evolve to avoidance for 

emergency maneuvering.  

 DDTs can be performed by either a human driver or an autonomous controller in the 

vehicle. For levels of autonomy 0-2, a human driver performs all DDTs. Levels 3 and 4 provide 

some complete vehicle automation wherein a controller takes over certain DDTs subject to 
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criteria (minimum speed, clear visibility, etc.), and level 5 consists of a vehicle performing all 

DDTs. Currently, no level 5 autonomy vehicle exists on the current market [9, 10].  

1.2.1 Sensors and Limitations 

 The level of autonomy depends entirely on the sensors a vehicle has. A simple overview 

of the main sensors in a vehicle is shown in Figure 1.2, with more sensor specification found in 

previous work [11]. Sensors primarily serve two functions: localization and environment 

recognition. Environment recognition can be in the form of light sensors, or ultrasound sensors. 

Localization sensors are usually in the form of Global Positioning Systems. These sensors are 

prone to sources of errors while driving. Environment recognition sensors rely on the amount of 

brightness, paint quality in lane markings, and background objects that can blend into vision 

fields. For positioning, GPS has presented a degree of error around 1.82 m (~6 ft.), which is 

enough to misplace a vehicle in a different lane [12, 13].  

 

 

 
Figure 1.2 Sensors Example  

 

 Current research focuses on developing different categories of vehicle lane-keeping 

technology, mainly addressing errors in sensor-based data acquisition. These features have 
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demonstrated excellent performance under controlled environments, but in-practice roadways 

differ significantly from the as-tested environments [14]. For example, poor roadway quality or 

deviations between old and new roadside paint lines can create recognition problems for optic 

systems. Adverse weather events, such as rain, snow, ice, and fog may obscure lane edges and 

prevent proper recognition of visual systems. Many northern states utilize salt mixtures to 

prevent or manage ice formation on roads during winter months, which can lead to pavement 

bleaching and affect lane edge identification.  

 GPS-assisted systems to date have not shown sufficient accuracy to maintain vehicles in 

a lane and prevent them from encroaching into adjacent lanes, which could cause a crash or 

instability. Options such as Differential GPS and Real-Time Kinematic systems provide higher 

accuracy but implementation costs are unfeasible for driving vehicles. Currently, connected 

vehicle technology has opened up as the avenue to solve the aforementioned problems [15]. 

1.2.2 Connected Vehicles  

 In recent years, CAVs have opened up many research fields such as the Variable Speed 

Limit (VSL), in which speed limits depend on factors that optimize traffic flow [16]. These 

efforts involve the use of Roadside Units (RSUs) which along with cellular stations, broadcast 

information to vehicles as shown in Figure 1.3. Implementation efforts include WYDOT, which 

has developed V2I projects to investigate the relationship on RSUs with trucks or cargo vehicles 

[17]. Similarly, VDOT has developed their own RSU infrastructure, and cloud databases to store 

information such as construction sites or speed limits [18]. The culminations of these groups is to 

offer a working prototype for full-scale deployment communications in between RSUs and 

CAVs [19].  
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Figure 1.3 Connected Vehicles Example 

 

 Traditionally, infrastructure technology is designed to provide human drivers with input 

to navigate roads. Sensor recognition technology aims to augment the human capacity of 

environment recognition for higher safety. However, V2I technology fosters the possibility of 

providing road-characteristics recognition that is rendered as useless to conventional drivers. 

These road-characteristics are the mathematical curvature and street designs that are inherent to 

the road itself. 

1.3 Proposed System Solution  

 A new alternative was offered and denoted as the MATC Smart Barrier. This proposed 

system is independent of the vehicle sensors and is not affected by some of the same 

environmental disturbances that can adversely affect the operation of current ADAS systems. 

This system is not intended to replace existing ADAS or CAVs. Instead, it is designed in 

conjunction with previously established CAV technology. A previous study has outlined the 

steps necessary to develop the entire MATC Smart Barrier system [20]. A brief summary will be 
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given and the remainder of this work will focus on elaborating one sub-part of the MATC Smart 

Barrier. 

 The MATC Smart Barrier is divided in three main modules: 

• Road Module: Mathematical description of road centerlines for vehicles to reference 

while on-driving scenarios. 

• Communication Module: Transmitting road module outputs to vehicles through V2I 

communications and localization of vehicles with respect to RSUs.  

• Vehicle Module: Controlling the vehicle to maneuvering according to the output obtained 

from the communication module.  

 The three modules are depicted in Figure 1.4 below, where a red dotted line denotes the 

moment in which the vehicle has obtained the road centerline reference. The black dotted line 

denotes the road reference the vehicle can use, and the angle 𝜃𝜃 denotes the amount of steering 

needed to compensate the turn and go back to the road reference. The communication and 

vehicles modules have been discussed and elaborated in previous studies [21-23]. This work will 

focus only on the theoretical and mathematical development of the Road Module.  
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Figure 1.4 MATC Smart Barrier Concept with Modules [20] 

 

 The objective of this work is to establish the mathematical foundation of a road reference 

centerline. This road reference can be stored in RSUs so that CAVs have a backup for navigation 

when other systems become unreliable.  

 The presented study has the potential to be implemented in a distributed model of vehicle 

fleets, but is not limited solely to passenger vehicles. Examples of other vehicle types, which 

could utilize the target path formulation for positional error estimation and corrections, include 

agricultural vehicles, transport vehicles (e.g., autonomous trucks), unmanned aerial systems, or 

mobile robots.  

 The following scheme is proposed for an implementation of the discrete road 

decomposition, as shown in Figure 1.5. The first step involves collection of road data through 

any convenient means: GPS data, surveying, or aerial scanning. The following step (denoted in 

Figure 1.5 with a dotted box) involves how input data is processed. This step will constitute the 

entirety of this work. This road data contains a representation of the road centerlines, which can 

be exported in different formats. These road centerlines are decomposed, stored in a road target-
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path matrix, and transmitted wirelessly to a vehicle in motion. The infrastructure may also assist 

with precise vehicle localization to improve error estimation, allowing the vehicle onboard 

systems to have excellent real-time observation of potential deviations from the target path. 

Finally, a controller is developed to consider the heading based on the discrete road 

decomposition and navigate safely through the road. 

 

 

Figure 1.5 Implementation Scheme for Road Curvature Decomposition [24] 

 

 Because the system does not rely on local ad hoc determination of lane boundaries and 

does not utilize machine vision or de facto external tracking systems, the system is well 

positioned to provide guidance for autonomous vehicles even in adverse weather conditions, 

poor visibility, and for temporary road or lane closures. The dynamic road network relay to 

autonomous vehicles may allow for alternative route selection in the event of congestion or crash 

events, and external guidance information such as tire-pavement friction reductions reported by 
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other vehicles or estimated from weather reports may be broadcast to the vehicle in targeted 

geospatial areas. As such, this technique for vehicle guidance systems could be complimentary to 

existing lane keeping and ADAS systems for crash avoidance or mitigation.  

 In conclusion, this work will focus on only the mathematical foundation of a road 

reference centerline. Different data sources will be explored and compared after the 

mathematical formulations are defined. The next chapters will explore the current road design 

practices, and the underlying mathematical tools needed to develop the methods proposed in this 

work.   
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Chapter 2 Current Road Design Practices 

 To formulate a mathematical basis of a road reference module, a review and 

understanding of road design is first needed. This chapter explains the current methods for 

highway road design, and its limitations.  

 In the United States, the prevailing standards for road design come from The American 

Association of State Highway and Transportation Officials, referred as the Green Book. This 

book offers an extensive review of road design considerations that comply with vehicle dynamic 

behavior [25]. In this chapter, road designs will be considered in two main aspects: alignment 

and superelevation/friction.  

2.1 Alignment  

 In road design, an alignment is defined by a series of points, lines and/or curves. These 

points are obtained from high accuracy GPS coordinates, each line and curve must connect 

exactly on a shared point or be coincident. When curves are formed, a radius of curvature is 

assigned to it. This is defined, as the radius of an imaginary (prescribed) circle that would fit per 

section of the road as shown in Figure 2.1. 
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Figure 2.1 Radius of Curvature Example for Arbitrary Curve 

 

 Alignment is classified as either horizontal or vertical. Horizontal alignment refers to the 

lines or curves viewed topologically, similar to conventional maps. Vertical alignment refers to 

the changes in elevation of the roadway, resulting in a vehicle’s change in pitch angle. An 

example of both is shown in Figure 2.2. Horizontal can be thought as the top view of a street and 

vertical as the orthogonal profile view of the same street.   
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Figure 2.2 Horizontal and Vertical Alignment for a given street 

 

 Horizontal alignment affects the operational characteristics of roadways such as vehicle 

operating speeds, sight distances, and highway capacity. Highway road design is influenced by 

many factors including terrain, traffic volume, environmental factors, or right-of-way 

availability. Thus, road design engineers must design horizontal alignment curves to provide a 

safe, functional roadway facility that provides adequate sight distances within economic 

constraints. 

 There exist multiple types of horizontal alignment designs, as shown in Figure 2.3 with 

their respective names. In general, most designs are made with simple or spiral curves. The 

radius of curvature plays a crucial role in horizontal alignment design since it is the primary 

source of transition for vehicles in between curves. 
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Figure 2.3 Example Horizontal Curves 

 

 The most general, and often most complicated, type of horizontal alignment is called a 

spiral curve. Spiral curves are made of five main components, known as initial tangent, spiral 

curve transition, circular curve, spiral curve transition, and final tangent. An example of a spiral 

curve is shown in Figure 2.4 below [26]. 
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Figure 2.4 Spiral Curve Section Layout 

 

 In road design, spiral curves are designed using formulas provided by the DOT to design 

discrete length segments and its attributes. A sample half-spiral curve is shown in Figure 2.5 

[27]. Mathematically, the formulas provided are not an analytical representation of the curve, but 

independent formulas to estimate appropriate waypoints, coordinates, or segment lengths of the 

curve. These formulas are used because they work in conjunction with current software of road 

design, but are not an appropriate reference for vehicles to have. The primary disadvantage is to 

store all different road design formulas and have to look up the appropriate set as different streets 

are encountered. Analytical models of the road horizontal alignment need to be represented for 

creating an appropriate road reference for autonomous vehicles. These analytical models will be 

derived from differential geometry and will be discussed in detail in Chapter 3. A more detailed 

example of the equations used in standard road horizontal alignment design is provided in 

Appendix A.1.  

 



 

16 

 

Figure 2.5 Half-Spiral Curve with Design Parameters 

 

2.2 Superelevation/Friction 

 When traveling on a horizontal curve, if the road is not a straight line, centrifugal forces 

act on vehicles trying to pull them outward. At low speeds or large radius curves, these effects 

are neglected. However, at high speeds or small radius curves, the effects of centrifugal increase. 

An excessive amount of these forces may cause lateral movement of the turning vehicle and it 

may become unstable causing the vehicle to deviate from the road [28, 29].  

 To prevent these instabilities, superelevation and road friction are used. Superelevation is 

the banking of the roadway such that the outside edge of pavement is higher than the inside edge. 

This reduces the amount of centrifugal forces by creating a component to this force that is 

balanced with the vehicle’s weight. The use of superelevation allows a vehicle to travel through a 

curve safely at a higher speed that would otherwise be impossible [25, 28]. Side friction 

developed between the tires and the road surface also acts to counterbalance the outward pull on 

the vehicle. Side friction is reduced when water, ice, or snow is present or when tires become 

excessively worn. When side friction is considerably low, driving should change accordingly to 

avoid instabilities.  
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 Analysis on superelevation and side friction is performed by point particle dynamics as 

per the Green Book. The dynamics are formulated using Newton’s Second Law of motion. A 

Free Body Diagram of the front vehicle is shown in Figure 2.6. 

 

 

 

Figure 2.6 Vehicle FBD in Road with Superelevation 

 

 By performing a force analysis on the front and top view of a vehicle, the following 

formula is obtained [25]: 

 

𝑣𝑣2

𝑔𝑔𝑔𝑔
=

𝜇𝜇 + 0.01𝑒𝑒
1 − 0.01𝜇𝜇𝜇𝜇

 (2.1) 

 

𝑣𝑣 = Vehicle velocity (m/s) 
𝑒𝑒 = Superelevation (as a percentage) 
𝑔𝑔 = Gravitational acceleration (9.81 m/s2)  

𝜇𝜇 = Coefficient of side road friction 
𝜌𝜌 = Radius of curvature (m) 

 

 The Green Book graphs different combination cases of superelevation, friction, velocity, 

and radius of curvature as shown in Figure 2.7. Similarly, the Green Book provides tabulations 
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for interpolation of values as it is decided by the road design engineer. In road design, it is 

desired that roads contain a range of suitable parameters for a large classification of vehicles. 

This permits that small car vehicles and trailers can maneuver and exist in the same road with 

similar driving parameters.  

 

 

Figure 2.7 Side Friction against Speed [25]  

 

 A limitation of the Green Book includes that point particle dynamics does not take into 

consideration many dynamic factors that are dependent on vehicle characteristics such as track 

width or length.  

 In practice, the data to create horizontal alignment curves is based from high accuracy 

GPS data, and a line creation tool. For this work, the road reference will be based on a numerical 
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and analytical representation. The analytical portion will be analyzed next based on the 

differential geometry study of space curves. 

2.3 Vehicle Dynamics Considerations 

 The Green Book analysis is limited to primarily road parameters and point-particle 

dynamic analysis. During high-speed and low-speed cornering, a more thorough analysis of 

vehicle dynamics is necessary to develop a relationship between road data and vehicle data. 

 The model that will be assumed is the Bicycle Model as shown in Figure 2.8 [28]. This 

model assumes that the behavior of the right and left tires is symmetric across the Center-of-

Gravity (CG) longitudinal axis. Note in Figure 2.8, subscript denotes either rear or front, and 

superscripts denote either longitudinal or transverse directions.   

 

 
Figure 2.8 Bicycle Kinematic Model 
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 Using the Bicycle Model, geometric considerations and Newton’s Second Law of motion 

can be used to obtain the famous Ackerman Steering formula [28, 29]: 

 

𝛿𝛿𝑓𝑓 =  (57.3𝐿𝐿 + 𝜂𝜂𝑣𝑣2)𝜌𝜌−1 (2.2) 

Where: 
𝛿𝛿𝑓𝑓 = Front wheel directional angle (deg) 
𝜌𝜌 = Radius of curvature (m) 
𝑣𝑣𝐶𝐶𝐶𝐶 = CG Vehicle velocity (m/s) 
𝐿𝐿 = Total sum of rear length 𝐿𝐿𝑟𝑟 and front length 𝐿𝐿𝑓𝑓 (m) 
𝜂𝜂 = Understeer gradient (deg-s2/m) 

 

 This formula relates the wheel steering angle (or Ackerman’s angle) to the vehicle’s 

current parameters, offering more information of vehicle behavior at curves. Wheel steering 

angle controls the change of the heading vehicle angle. Thus, proper maneuvering maintains the 

wheel steering angle under a range that does not cause the current vehicle angle to go on yaw 

instabilities.  

 Since 𝜌𝜌 ∈ R and often appears in the denominator, to avoid division by zero, the inverse 

function known as curvature is used such that 𝜅𝜅 = 𝜌𝜌−1. From this point forward, only curvature 

κ will be used since curvature is unique for every vehicle when traversing any arbitrary road. 

Furthermore, all roads have already pre-determined standard curvatures that were designed for a 

distribution of vehicles as discussed before.  
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Chapter 3  Differential Geometry Overview 

 As described in Chapter 1, CAVs require a mathematical model to reference a given road 

section. However, the techniques for road designs, do not offer analytical models to represent the 

roads a vehicle can use.  

 The objective of this chapter is to develop a mathematical foundation that will be used in 

later chapters to represent roads in an analytical form that vehicles can reference during 

autonomous navigation. Fundamental principles come from classical and differential geometry. 

The current chapter focuses on the necessary theory behind differential geometry for the road 

reference. A basic understanding of geometry is assumed, preliminary geometry formulae will be 

presented in this chapter and serve as an establishment of the notations used throughout this 

work. 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 : Cartesian coordinates in 3-dimensional Euclidean space ∈ ℝ3 
Bolding: Vectors in space ∈ ℝ3, i.e. 𝒙𝒙 represents the components 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 
𝑠𝑠: Arc length of curve  
𝜏𝜏: Torsion of a curve 
𝜌𝜌: Radius of curvature 
𝜅𝜅: Curvature of a curve 
𝑵𝑵: Unit principal normal vector of a curve 
𝑻𝑻: Unit tangent vector 
𝑩𝑩: Unit binormal vector 
‖𝒂𝒂‖ =  √𝒂𝒂 ∙ 𝒂𝒂 : Norm of vector  
𝒂𝒂 × 𝒃𝒃 = ‖𝒂𝒂‖ ‖𝒃𝒃‖sin (𝜃𝜃) : Geometric cross product of vectors 
𝒂𝒂 ∙ 𝒃𝒃 = ‖𝒂𝒂‖ ‖𝒃𝒃‖cos (𝜃𝜃) : Geometric dot product of vectors 
 
 In Chapter 2, radius of curvature was explained as a main characteristic that road 

designers use. However, for representation of analytical curves, the inverse function is used such 

that curvature 𝜅𝜅 is presented as: 

 

𝜅𝜅(𝑠𝑠) =
1

𝜌𝜌(𝑠𝑠) 
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 The curvature is defined as the rate of change of the tangent of the arc length. Let 𝜌𝜌 

represent the radius of a perfect circle, 𝑑𝑑𝑑𝑑 be its differential arc length, and 𝑑𝑑𝑑𝑑 be the angle in 

between any axis (i.e. horizontal axis) and 𝜌𝜌. As it is shown in Figure 3.1, assuming small 

angles, the curvature of a curve can be denoted as: 

 

sin 𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝜌𝜌

→ 𝑑𝑑𝜃𝜃 = 𝑑𝑑𝑑𝑑𝑑𝑑 → 𝜅𝜅 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 

 

Figure 3.1 Radius of Curvature with respect to a Segment Section 

 

3.1 Clothoids 

 Let a curve be represented by the form 𝑥𝑥 = 𝑥𝑥(𝑠𝑠) where the arbitrary parameter s can 

represent arc length. By looking at the representation 𝑥𝑥 = 𝑥𝑥(𝑠𝑠), there is a dependence on the 

choice of coordinate system in space. In this work, it is needed to represent a curve by invariant 

terms such that it is independent of coordinate systems. Earliest investigations of the invariance 

of curve representation come from Leonard Euler [30]. 

 Invariance is defined as an intrinsic property that a curve has that is independent of the 

coordinate system chosen. In Euclidean 3D space, the distance represented with the norm of two 

points is the simplest invariant quantity that can be found. Such that if 𝒅𝒅 = 𝒚𝒚 − 𝒙𝒙: 
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‖𝒅𝒅‖ = ��(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2

3

𝑖𝑖=1

= ��(𝑑𝑑𝑖𝑖)2

3

𝑖𝑖=1

= �(𝒅𝒅 ∙ 𝒅𝒅) 

 

 Previous studies in the theory of curves have developed the existence and uniqueness of 

an invariant representation of curves [30, 31]. The theory shows that arc length, curvature, and 

torsion are invariant functions that can describe any general curve. By making the arc length the 

independent variable of curvature and torsion, the following two equations are found: 

 

𝜅𝜅 = 𝜅𝜅(𝑠𝑠)         &          𝜏𝜏 = 𝜏𝜏(𝑠𝑠) 
 

 These are called the intrinsic or natural equations of the curve, such that the natural 

equations represent an invariant form for any general curve. Curvature can be pictured as the 

amount of deviation of a curve from a straight line, and torsion as the deviation of a curve from 

being constrained to a plane. Thus, torsion will always be zero for two-dimensional space curves.   

 If 𝜃𝜃(𝑠𝑠) is the angle to the tangent vector 𝑡𝑡(s) to the curve from a horizontal axis, 

then, 𝑡𝑡(𝑠𝑠) = [cos(𝜃𝜃) sin(𝜃𝜃)]. As it was previously determined, curvature can be expressed as: 

  

𝜅𝜅 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

    (3.1) 

 

 Considering the case of a 2D curve, a representation can be found such that the natural 

equations are: 

 

𝜅𝜅 =
𝑠𝑠

𝑐𝑐2          &          𝜏𝜏 = 0   (3.2) 
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Where c represents an arbitrary constant. This set of natural equations are known as a Cornu 

Spiral. Recalling Equation (2.1) and 𝜃𝜃(𝑠𝑠), the angle can be found as follows: 

 

𝜅𝜅 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

→ 𝑑𝑑𝑑𝑑 = 𝜅𝜅𝜅𝜅𝜅𝜅 → 𝜃𝜃 = � 𝜅𝜅𝜅𝜅𝜅𝜅 + 𝜃𝜃0 

 

 Assuming zero initial conditions, substituting the natural equations (3.2), and applying a 

change of variable: 

 

𝜃𝜃 = �
1
𝑐𝑐2

𝑠𝑠

0

𝜎𝜎𝜎𝜎𝜎𝜎 → 𝜃𝜃 =
𝑠𝑠2

2𝑐𝑐2      (3.3) 

 

By recalling the tangent of a curve C, 𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃(𝑠𝑠)�𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑 = sin�𝜃𝜃(𝑠𝑠)� 𝑑𝑑𝑑𝑑, and using 

Equation (3.3), the following equations known as Cosine/Sine Fresnel Integrals are shown: 

 

𝑥𝑥 = � cos (𝜃𝜃(
𝑠𝑠

0

𝜎𝜎))𝑑𝑑𝑑𝑑 =  � cos �
𝜎𝜎2

2𝑐𝑐2�
𝑠𝑠

0

 𝑑𝑑𝑑𝑑 

𝑦𝑦 = � sin (𝜃𝜃(
𝑠𝑠

0

𝜎𝜎))𝑑𝑑𝑑𝑑 = � sin �
𝜎𝜎2

2𝑐𝑐2�
𝑠𝑠

0

 𝑑𝑑𝑑𝑑 

 

 These integrals are computationally expensive to evaluate as they cannot be evaluated in 

terms of elementary functions. Examples of the Fresnel Integrals are shown in Figure 3.2 and 

Figure 3.3.  
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Figure 3.2 Cosine Fresnel Integral 

 

 

Figure 3.3 Sine Fresnel Integral 

 

 When these two are plotted together, a clothoid is formed. An example clothoid is shown 

in Figure 3.4.  Clothoids are often used as the main resource on curve design because clothoids 
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have a linear curvature profile. So that, when travelled at a constant speed, the curvature varies in 

proportion to time to provide a smooth ride. An example of the top section of the clothoid is 

shown along with its curvature profile on Figure 3.5 in which the linear relationship is 

noticeable.  

 

 

Figure 3.4 Clothoid Example 
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Figure 3.5 Clothoid Section (left) and Clothoid Curvature (right) 

 

3.2 Serret-Frenet Coordinates 

 This subsection will elaborate on the formulation of the Serret-Frenet formulas and their 

canonical representations. At this point, it will be assumed that all vectors are functions of 

segment length s, unless otherwise stated. Considering a curve C be defined by a vector in three-

dimensional space with 𝒓𝒓 = [𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3]. For C, the unit tangent vector can be defined as the unit 

vector of the derivatives of 𝒓𝒓: 

 

𝑻𝑻 =
𝒓𝒓′

‖𝒓𝒓′‖
=

𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

 

 

 As it was defined previously, the curvature can be related for small angles through (3) to 

obtain: 

𝜅𝜅 = �
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

� 
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The principal normal will be defined as: 

𝑵𝑵 =
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

�𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑�

=
1
𝜅𝜅

𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

→  
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝑵𝑵     (3.4) 

 

 Noting that ‖𝑻𝑻‖ = 𝑻𝑻 ∙ 𝑻𝑻 = 1, it follows that �𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

𝑻𝑻 + 𝑻𝑻 𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

� = 0, this indicates that for the 

dot product of two unit tangent vectors to be zero, the principal normal has to be zero as well, 

proving that both unit tangent and principal normal are perpendicular. 

 Lastly, the binormal product is defined by the cross product of the unit tangent and 

principal normal: 

𝑩𝑩 = 𝑻𝑻 × 𝑵𝑵 

 

 The Serret-Frenet triad (T, N, B) can now be illustrated with their corresponding plane 

names in Figure 3.6. Where their respective plane names are T-N: Osculating Plane, N-B: 

Normal Plane, and B-T:  Rectifying Plane.  
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Figure 3.6 Labeled Serret-Frenet Triad 

 

 Continuing on the derivation of the Serret-Frenet formulas, similar to the unit tangent 

vector, the principal normal can be derived as follows: 

 

‖𝑵𝑵‖ = 𝑵𝑵 ∙ 𝑵𝑵 = 1  
𝑑𝑑

𝑑𝑑𝑑𝑑→   �
𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

𝑵𝑵 + 𝑵𝑵
𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

� = 0 

 

 Implying that the unit principal normal has to be perpendicular to its derivative with 

respect to s. To find this derivative, first assume that 𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

 is a superposition of the three unit 

vectors (T, N, and B) with arbitrary constants such that:  

 

𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑻𝑻 + 𝜏𝜏𝑩𝑩 + 𝛾𝛾𝑵𝑵 
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Noting that 𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

⊥ 𝑁𝑁, the vector 𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

 is now constrained to the rectifying plane: 

𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑻𝑻 + 𝜏𝜏𝑩𝑩        (3.5) 

 

 For some arbitrary constants 𝛼𝛼 and 𝜏𝜏. Since the binormal vector is defined to be 

perpendicular to the osculating plane, the constant 𝜏𝜏 can be defined as a deviation from the 

osculating plane. This will be denoted as torsion. Deriving the cross product used earlier: 

 

𝑑𝑑𝑩𝑩
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑻𝑻 × 𝑵𝑵)

𝑑𝑑𝑑𝑑
=

𝑑𝑑𝑻𝑻
 𝑑𝑑𝑑𝑑

× 𝑵𝑵 + 𝑻𝑻 ×
𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

 
 

𝑑𝑑𝑩𝑩
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝑵𝑵 × 𝑵𝑵 + 𝑻𝑻 × (𝛼𝛼𝑻𝑻 + 𝜏𝜏𝑩𝑩) = 𝑻𝑻 × 𝜏𝜏𝑩𝑩 = −𝜏𝜏𝑵𝑵     (3.6) 

 

This approach can be repeated with the principal normal to find 𝛼𝛼: 

𝑵𝑵 = 𝑩𝑩 × 𝑻𝑻 
 

𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑩𝑩 × 𝑻𝑻)

𝑑𝑑𝑑𝑑
=

𝑑𝑑𝑩𝑩
𝑑𝑑𝑑𝑑

× 𝑻𝑻 + 𝑩𝑩 ×
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

 
 

𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

= −𝜏𝜏𝑵𝑵 × 𝑻𝑻 + 𝑩𝑩 ×  𝜅𝜅𝑵𝑵 = 𝜏𝜏𝑩𝑩 − 𝜅𝜅𝑻𝑻      (3.7) 

 
 By comparison of (9) with (7), it is noticed that 𝛼𝛼 = −𝜅𝜅. Formulas (6), (8), and (9) 

together are called the Serret-Frenet Formulas: 

 

𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝑵𝑵    
𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

= −𝜅𝜅𝑻𝑻 + 𝜏𝜏𝑩𝑩 
𝑑𝑑𝑩𝑩
𝑑𝑑𝑑𝑑

= −𝜏𝜏𝑵𝑵 
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3.3 Acceleration in Serret-Frenet Coordinates 

 Recall from the chain rule that the following is true when deriving with respect to 

segment length: 

 

𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑

= �
1

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑠̇𝑠

𝑑𝑑
𝑑𝑑𝑑𝑑

→
𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑠̇𝑠
𝑑𝑑

𝑑𝑑𝑑𝑑
         (3.8) 

 

 This equation denotes that, for unity constant velocity, deriving with respect to time or 

segment length is the same. Equation (3.8) will be used throughout the following formulations 

rather consistently. Using a curve with the vector representation 𝒓𝒓 = [𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3] the following 

time derivative can be found: 

 

𝒗𝒗 =
𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

=  𝑠̇𝑠  
𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

= 𝑠̇𝑠𝑻𝑻  
 
𝑑𝑑2𝒓𝒓
𝑑𝑑𝑡𝑡2 =

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑠̇𝑠𝑻𝑻 ) =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑠̇𝑠 )𝑻𝑻 +
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

𝑠̇𝑠 = 𝑠̈𝑠 𝑻𝑻 + 𝑠̇𝑠 �
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� = 𝑠̈𝑠 𝑻𝑻 + 𝑠̇𝑠2 �
𝑑𝑑𝑻𝑻
𝑑𝑑𝑑𝑑

� = 𝑠̈𝑠 𝑻𝑻 + 𝑠̇𝑠2(𝜅𝜅𝑵𝑵) 
 

𝒂𝒂 =
𝑑𝑑2𝒓𝒓
𝑑𝑑𝑡𝑡2 = 𝑠̈𝑠 𝑻𝑻 + 𝑠̇𝑠2𝜅𝜅 𝑵𝑵         

(3.9) 

 

 This formula denotes the classical acceleration of a particle on an arbitrary curve in 

Serret-Frenet coordinates. By construction, the acceleration vector in Equation (3.9) will never 

contain a component in the binormal direction. This construction can only be valid for a planar 

curve assumption [30]. When considering three-dimensional or space curves, the assumption is 

no longer valid [33].  
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 For most practical purposes, analysis of space curves simplifies the motion of particles to 

be plane. This is if a curve can be represented through a vector representation where 𝒓𝒓 ≠ 𝒓𝒓(𝜅𝜅, 𝜏𝜏) 

and 𝜏𝜏 = 0.  This assumption becomes invalid when the desired trajectory is a space curve such 

that the vector 𝒓𝒓 = 𝒓𝒓(𝜅𝜅, 𝜏𝜏).  

 To implement the general case of acceleration in a space curve, a canonical 

representation 𝒓𝒓 = 𝒓𝒓(𝜅𝜅, 𝜏𝜏) will be used. The primary advantage is that the resulting vector will be 

invariant under any coordinate transformation. Starting from Taylor’s approximation: 

 

𝒓𝒓(𝑠𝑠) = 𝑟𝑟(0) + �
𝑠𝑠𝑛𝑛

𝑛𝑛!
 

3

𝑛𝑛=1

�
𝑑𝑑𝑛𝑛𝑟𝑟(0)

𝑑𝑑𝑠𝑠𝑛𝑛 � + 𝑜𝑜(𝑠𝑠3)  

 

Recalling the first derivative with respect to segment length: 

𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

= 𝑻𝑻 

 

The second derivative: 

𝑑𝑑2𝒓𝒓
𝑑𝑑𝑠𝑠2 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝑵𝑵 
 

Finally the third: 

𝑑𝑑3𝑥𝑥
𝑑𝑑𝑠𝑠3 =

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜅𝜅𝑵𝑵) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑵𝑵 + 𝜅𝜅
𝑑𝑑𝑵𝑵
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑵𝑵 − 𝜅𝜅2𝑻𝑻 + 𝜅𝜅𝜅𝜅𝑩𝑩 

 

Assuming zero initial condition for unit vectors: 

𝑻𝑻(0) = (1,0,0)   𝑵𝑵(0) = (0,1,0)   𝑩𝑩(0) = (0,0,1) 
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Applying Taylor’s approximation, we can approximate any curve in terms of its invariants 

forms: 

𝒓𝒓(𝑠𝑠) = 𝑟𝑟(0) +
𝑠𝑠1

1!
�

𝑑𝑑1𝑟𝑟(0)
𝑑𝑑𝑠𝑠1 � +

𝑠𝑠2

2!
�

𝑑𝑑2𝑟𝑟(0)
𝑑𝑑𝑠𝑠2 � +

𝑠𝑠3

3!
�

𝑑𝑑3𝑟𝑟(0)
𝑑𝑑𝑠𝑠3 � + 𝑜𝑜(𝑠𝑠3)  

 

Substituting derivatives: 

𝒓𝒓(𝑠𝑠) = 𝑟𝑟(0) + 𝑠𝑠 𝑻𝑻 +
𝑠𝑠2

2
(𝜅𝜅𝑵𝑵) +

𝑠𝑠3

6
�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑵𝑵 − 𝜅𝜅2𝑻𝑻 + 𝜅𝜅𝜅𝜅𝑩𝑩� + 𝑜𝑜(𝑠𝑠3)  
 

𝒓𝒓(𝑠𝑠) = �𝑠𝑠 −
𝜅𝜅2𝑠𝑠3

6
� 𝑻𝑻 + �

𝑠𝑠2

2
𝜅𝜅 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑠𝑠3

6
� 𝑵𝑵 + �

𝜅𝜅𝜅𝜅𝑠𝑠3

6
� 𝑩𝑩 + 𝑜𝑜(𝑠𝑠3) 

 

This leads to a canonical representation of a curve:  

𝑟𝑟1(𝑠𝑠) = 𝑠𝑠 −
𝜅𝜅2

6
𝑠𝑠3 + 𝑜𝑜(𝑠𝑠3) 

𝑟𝑟2(𝑠𝑠) =
𝜅𝜅
2

𝑠𝑠2 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1
6

𝑠𝑠3 + 𝑜𝑜(𝑠𝑠3) 

𝑟𝑟3(𝑠𝑠) =  
𝜅𝜅𝜅𝜅
6

𝑠𝑠3 + 𝑜𝑜(𝑠𝑠3) 

 

 This canonical representation 𝒓𝒓 = 𝒓𝒓(𝜅𝜅, 𝜏𝜏) now contains the necessary parameters to be 

invariant while being general to the space curve case. However, the acceleration of the particle 

needs to be found such as in equation (3.9). The necessary steps make use of equation (3.8) 

denoting the difference between deriving with respect to time and segment length. Assuming 

only first term approximations, the curve representation is: 

 

𝒂𝒂 =
𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑻𝑻) +
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑵𝑵� +
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑩𝑩� 
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The procedure will be available in Appendix A.1, but the resulting acceleration components are 

found to be: 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑻𝑻) =   (  (1 − 𝑠𝑠𝑠̈𝑠𝜅𝜅2)𝑠̈𝑠𝑻𝑻 + 2𝑠̇𝑠2𝜅𝜅𝑵𝑵 + 𝜏𝜏𝑩𝑩 ) 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑵𝑵� =    𝑚𝑚 ��(𝜅̈𝜅𝑠̇𝑠𝜅𝜅 + 𝜅̇𝜅) �−
1
2

𝑠𝑠2� + (𝑠̇𝑠2𝜅𝜅2 + 𝜅𝜅𝑠̇𝑠)(−𝑠𝑠)� 𝑻𝑻

+ �(𝜅̈𝜅 − 𝜅𝜅3𝑠̇𝑠 − 𝜅𝜅𝜏𝜏2 𝑠̇𝑠)
1
2

𝑠𝑠2 + 2𝑠𝑠𝜅̇𝜅𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 + 𝜅𝜅𝜅𝜅𝑠̈𝑠� 𝑵𝑵

+ ��
𝜅̈𝜅
2

𝑠𝑠𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 +
𝜅̇𝜅
2

𝑠𝑠 + 𝜅𝜅𝑠̇𝑠� 𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏� 𝑩𝑩� 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑩𝑩� =  

��
1
6

 (𝜅̈𝜅𝜏𝜏 + 2𝜅̇𝜅𝜏̇𝜏 + 𝜅𝜅𝜏̈𝜏)𝑠𝑠3 + �(𝜅̇𝜅𝜏𝜏 + 𝜅𝜅𝜏̇𝜏)𝑠̇𝑠 +
𝜅𝜅𝜅𝜅
2

𝑠̈𝑠� 𝑠𝑠2 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2� 𝑩𝑩 

− �
1
6

(𝜅̇𝜅𝜏𝜏2𝑠̇𝑠 + 2𝜅𝜅𝜅𝜅𝜏̇𝜏𝑠̇𝑠 + 𝜅𝜅𝜏𝜏2𝑠̈𝑠 − 𝜅𝜅𝜏𝜏2𝑠̇𝑠2 + 𝜅̇𝜅𝜏𝜏2𝑠̇𝑠 + 𝜅𝜅𝜏̇𝜏𝑠̇𝑠𝜏𝜏)𝑠𝑠3 + 𝜅𝜅𝜏𝜏2𝑠̇𝑠2𝑠𝑠2� 𝑵𝑵� 

 

Comparing the acceleration of the invariant form compared to (11), the level of mathematical 

complexity and numerical computations increases drastically. 

3.4 Bertrand (Parallel) Curves 

 When two curves share a common principal normal at any of their points, they are called 

Bertrand curves. If C is a plane (2D) curve, it is always possible to find a curve C’ such that C 

and C’ are Bertrand curves. By definition of involute, all curves orthogonal to the tangents of C 

are located in the plane E [30]. Thus, if E is the plane evolute of C, all involutes C’ of E have the 

same principal normal as C such that these Bertrand curves are parallel with a constant distance 

separating them.  

 The relationship between curve C and C’ can be expressed by a linear operation with a 

shared principal tangent such that if 𝐶𝐶: 𝑟𝑟(𝑠𝑠) and 𝐶𝐶′: 𝑟𝑟′(𝑠𝑠). The following equation can be used: 
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𝑟𝑟′ = 𝑟𝑟 + 𝑑𝑑𝑵𝑵 (3.10) 

Where:  
𝑑𝑑 = Constant distance in between curves 
𝑵𝑵 = Principal normal function 
To verify the existence of a curve C’ such that C and C’ are parallel, the curvature and torsion 

of C have to satisfy the following linear relationship with constant coefficients: 

 

𝑎𝑎1𝜅𝜅 + 𝑎𝑎2𝜏𝜏 = 1 
 

If the previous relation is verified, the parallel curve C’ will have the following description 

where 𝑑𝑑 = 𝑎𝑎1: 

𝑟𝑟′ = 𝑟𝑟 + 𝑎𝑎1𝑵𝑵   

 

In the special case of 2D curves, 𝜏𝜏(𝑠𝑠) = 0 such that: 

𝑎𝑎1 =
1

𝜅𝜅(𝑠𝑠) 

 

Which can be plugged into Equation (3.10) to obtain the following parallel curve relationship: 

𝑟𝑟′(𝑠𝑠) = 𝑟𝑟(𝑠𝑠) +
𝑵𝑵(𝑠𝑠)
𝜅𝜅(𝑠𝑠)  

 

 Thus, as long as the curvature of curve C is found, a curve C’ can be found to be 

proportional to the curvature of C and its corresponding principal normal. 

 The design formulas used in street design as discussed in Chapter 2 employ many 

independent equations to avoid the analytical construction of these curves. 
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Chapter 4 MDC Geometric Formulation  

 This chapter will focus on the geometric formulation of curvature assuming the Serret-

Frenet coordinates as established earlier on Chapter 3.  

4.1 Vehicle Dynamics and Road Design 

 Principles of vehicle dynamics were used in order to generate a road mapping technique, 

which would automatically resolve limitations on vehicle stability and control. It was noted that 

all vehicle-road interactions are governed by the force generated at the wheels, and all vehicle 

controls are dictated by the direction and magnitude of friction force [28, 29]. Using Newton’s 

second Law, those forces can be related to the fundamental kinematic constraints of path motion. 

 A Frenet-Serret reference frame is used and assumed that the vehicle navigates on a 2D 

Euclidean Space as shown in Figure 4.1. 

 

 

Figure 4.1 Two-Dimensional Serret-Frenet Coordinates Example in Vehicle’s Center of Mass 

 

 The net acceleration acting on the vehicle at an instant in time is described by the time 

variance of the path. These limits are related to the acceleration of a vehicle under circular 

motion, which is denoted from Equation (3.9) again as: 
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𝒂𝒂 = 𝑣̇𝑣 𝑻𝑻 + 𝜅𝜅𝜅𝜅2 𝑵𝑵 

Where: 
 
𝒂𝒂 = Total acceleration of vehicle (m/s2) 
𝑣𝑣 = Tangential velocity of vehicle (m/s) 
𝜅𝜅 = Curvature at an instantaneous point (m-1) 
𝑵𝑵 =Normal unit vector 
𝑻𝑻 = Tangential unit vector 

 

 Longitudinal accelerations are produced by a net longitudinal force, which either 

increases or decreases vehicle speed. Lateral accelerations in the normal direction (perpendicular 

to the velocity vector) do not affect speed and instead turn the vehicle’s trajectory. Lateral forces 

are generated during turns and from road cross-section geometry (superelevation, banks, 

crowning). Curvature, κ, which is the reciprocal of the radius of curvature, is related to the 

instantaneous rate of change of the tangential unit vector T with respect to time or distance 

traveled [31, 32, 34]. 

 The AASHTO standardized road designs provide control for tire-pavement friction using 

equations for superelevation, crowning, and turn radius based on reasonable limits of vehicle 

performance in a variety of weather and visibility conditions and driver and occupant comfort 

[25]. These road design parameters are based on numerous historical studies of driver tolerance 

for lateral accelerations [35]. Speed limits are controlled on roadways based on measured 

reductions in friction during wet travel conditions [36]. Hence, the Frenet-Serret coordinates are 

highly compatible with onboard vehicle systems and prevailing road geometrical design. 

 Moreover, determining target vehicle path geometries using Frenet-Serret formulation is 

highly conducive for autonomous vehicle control systems. For example, accelerometers measure 

acceleration along principal axes; rate transducers record vehicle angular rates of change; 

gyroscopes identify instantaneous vehicle inclinations; wheel sensors and GPS are useful for 
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estimating current speeds; and steering wheel rotational sensors can detect wheel steer angles. 

Wheel steer angles can be related to the instantaneous curvature using Ackerman estimates and 

corrections for understeer gradient [28, 29]. For vehicles whose orientation closely follows the 

roadway tangent vector T, the lateral acceleration can provide an additional evaluation of the 

instantaneous curvature of the vehicle. 

 A target path was developed with geometric constraints using Frenet-Serret coordinates 

in local space and then those coordinates were mapped to the surface of the earth using 

transformation matrices based on GPS coordinates. Thus, curvature can be expressed in a vector 

form that has a direction parallel to the Normal Unit Vector shown in Figure 1.2. Similarly, a 

vector perpendicular to the curvature direction will provide a velocity tangent-vector 

approximation at that point. This velocity vector provides a heading angle to the desired 

trajectory that is needed to follow a road path. 

4.2 Spatial Curvature Formulation 

 The instantaneous curvature of a geospatial point (deemed “A”) was obtained using the 

spatial coordinates of adjacent points. The technique may be scaled with smaller or larger 

segmentation, leading to a cheaper computational cost [37]. 

 Let a scalene triangle with corners A, B, and C have a circumscribed circle of radius ρ in 

Euclidean 2D space as shown in Figure 4.2. The vertices of the triangle are connected using 

vectors AB, AC, and BC. 
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Figure 4.2 Circumscribed Circle in Scalene Triangle 

 

 A vector AD, equal to the cross product in between the vectors AB and AC, will be 

normal to the plane defined by the intersection of AB and AC. The magnitude for vector AD 

may be identified based on the cross product: 

 

‖𝐷𝐷‖ =  ‖𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴‖ =  ‖𝐴𝐴𝐴𝐴‖ ‖𝐴𝐴𝐴𝐴‖  sin 𝜙𝜙1 

 

Let a vector E be the cross product of AD with the vector AB defining this new vector in the 

direction of e, as shown in red in Figure 4.3. The magnitude of vector E is defined as: 

 

‖𝐸𝐸‖ = ‖𝐷𝐷 × 𝐴𝐴𝐴𝐴‖ = ‖𝐴𝐴𝐴𝐴‖2‖𝐴𝐴𝐴𝐴‖  sin 𝜙𝜙1 

 

 
Figure 4.3 First Unit Vector Direction on Triangle 
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 Similarly, let a vector F be the cross product of AD with the vector AC, defining this new 

vector in the direction of f shown in blue in Figure 4.4. The magnitude of vector f is defined as: 

 

‖𝐹𝐹‖ = ‖𝐷𝐷 × 𝐴𝐴𝐴𝐴‖ = ‖𝐴𝐴𝐴𝐴‖‖𝐴𝐴𝐴𝐴‖2  sin 𝜙𝜙1 

 

 

Figure 4.4 First- and Second-Unit Vectors on Triangle 

 

The unit vectors of 𝒆𝒆 and 𝒇𝒇 are defined by the following: 

𝒆𝒆 =
𝐸𝐸

‖𝐴𝐴𝐴𝐴‖2‖𝐴𝐴𝐴𝐴‖ sin 𝜙𝜙1
 

𝒇𝒇 =
𝐹𝐹

‖𝐴𝐴𝐴𝐴‖‖𝐴𝐴𝐴𝐴‖2 sin 𝜙𝜙1
 

 

 The midsection of any triangle’s side intersects with each other at a point P 

corresponding to the center of the circle inscribing points A, B, and C. These intersecting lines 

denote two triangles with the same angle 𝜙𝜙1 in between the unit vectors and their corresponding 

midsections, as shown in Figure 4.5. 
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Figure 4.5 Radius of Curvature obtained from Geometric Relationships 

 

 From these triangles, the radial vector AP may be described using components along unit 

vectors 𝒆𝒆 and 𝒇𝒇. As a result, vector AP is described as: 

 

𝐴𝐴𝑃𝑃1 =
𝐴𝐴𝐴𝐴

2 sin 𝜙𝜙1
 𝑒𝑒 =

𝐸𝐸
2‖𝐴𝐴𝐴𝐴‖2 sin2 𝜙𝜙1

  

𝐴𝐴𝑃𝑃2 =
−𝐴𝐴𝐴𝐴

2 sin 𝜙𝜙1
 𝑓𝑓 =

−𝐹𝐹
2‖𝐴𝐴𝐴𝐴‖2 sin2 𝜙𝜙1

 

 

From our previous definition of the vector AD, it is possible to simplify further: 

𝐴𝐴𝑃𝑃1 =
‖𝐴𝐴𝐴𝐴‖2𝐸𝐸
2‖𝐷𝐷‖2   

𝐴𝐴𝑃𝑃2 =
−‖𝐴𝐴𝐴𝐴‖2𝐹𝐹

2‖𝐷𝐷‖2  

 

With these components, it is possible to obtain the magnitude as follows: 

𝐴𝐴𝐴𝐴 =  
‖𝐴𝐴𝐴𝐴‖2𝐸𝐸
2‖𝐷𝐷‖2 −  

‖𝐴𝐴𝐴𝐴‖2𝐹𝐹
2‖𝐷𝐷‖2   

𝜌𝜌 =  
‖𝐴𝐴𝐴𝐴‖2𝐸𝐸 − ‖𝐴𝐴𝐴𝐴‖2𝐹𝐹

2‖𝐷𝐷‖2  
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Using previous definitions of E and F: 

𝜌𝜌 =  
‖𝐴𝐴𝐴𝐴‖2‖𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴‖ − ‖𝐴𝐴𝐴𝐴‖2‖𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴‖

2‖𝐷𝐷‖2  

 

Using a previous definition of AD, it is possible to obtain the radius of the prescribed circle in 

terms of only the difference in between points A, B, and C: 

𝜌𝜌 =  
‖𝐴𝐴𝐴𝐴‖2‖(𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴) × 𝐴𝐴𝐴𝐴‖ − ‖𝐴𝐴𝐴𝐴‖2‖(𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴) × 𝐴𝐴𝐴𝐴‖

2‖(𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴)‖2  (4.1) 

 

Noting that 𝜅𝜅 = 1 𝜌𝜌� , it is possible to calculate curvature as: 

𝜅𝜅 =  
2‖(𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴)‖2

‖𝐴𝐴𝐴𝐴‖2‖(𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴) × 𝐴𝐴𝐴𝐴‖ − ‖𝐴𝐴𝐴𝐴‖2‖(𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴) × 𝐴𝐴𝐴𝐴‖ (4.2) 

 

 This process can be executed for small and large spacing between consecutive points 

along a curve, as shown in Figure 4.6. As a result, both finely and coarsely sampled data may be 

utilized to generate geospatial curvature maps. 

 

 

Figure 4.6 Scalene Triangle in Small Arc-Segment 

 

 Curvature is related to the second-order differential of position and has strong association 

with the limits on lateral acceleration. Given that the second order differential equations are used 
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to condition non-holonomic boundary conditions, determination of instantaneous curvature 

provides half of the data needed to fully define smooth, continuous, and deterministic target path 

formulations. 

 In addition to the second order curvature-based non-holonomic constraint, a 1st-order 

boundary condition was also identified based on the roadway tangent vector. The roadway 

tangent vector, T, is determined using an orthogonal phase shift of the curvature vector, such 

that: 

 

𝑇𝑇 =  
(𝐴𝐴𝐴𝐴 × 𝜅𝜅)

‖(𝐴𝐴𝐴𝐴 × 𝜅𝜅)‖ 

 

 Imposing local curvature and tangent coordinate vectors at each geospatial road data-

point ensures that the target road path will be consistent with Frenet-Serret formulation. Then, 

roadway data checking can be performed to ensure that the curvature and point data is consistent 

with road design parameters and useful for identifying potential errors or skew datasets. 

4.3 Segment Length Estimation 

 Between each consecutive set of geospatial points, the optimized roadway target path 

length, s, may be known to assist with relating vehicle current position to an equivalent position 

along the roadway target path. This error calculation is essential for determining if the vehicle’s 

trajectory angle, speed, and current position combination put the vehicle at risk of departing the 

lane or roadway.   

 The length of each segment of the road path may be identified using the fundamental 

determination of arc length to radius based on included angle. The arc-length s of a curve is 

defined as the length traveled by the angle 𝜃𝜃 along a constant radius 𝜌𝜌: 
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𝜃𝜃 =
𝑠𝑠
𝜌𝜌

 

 

Recalling curvature is the inverse of the radius of curvature, it follows that:  

𝜃𝜃 = 𝜅𝜅𝜅𝜅 

 

A differential form may be used to relate the change in angle to the segment length, s: 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝜅𝜅

 

 

By separation of variables and integration: 

� 𝑑𝑑𝑑𝑑 =  �
𝑑𝑑𝑑𝑑
𝜅𝜅

 

 

Finally, the segment lengths can be determined through numerical integration of the curvature 

and angle changes: 

Δ𝑠𝑠 =  �
𝑑𝑑𝑑𝑑
𝜅𝜅

 (4.3) 
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Chapter 5 MDC Geometric Formulation Implementation 

5.1 Road Curvature Decomposition  

 The curvature formulation shown in Equation (4.2) and road segment calculations shown 

in Equation (4.3) may be applied to a discrete point cloud collected from a road geometry to 

determine the instantaneous curvature for every point, except at terminal ends of roadways. An 

example of the determination of curvature is shown in Figure 5.1.  

 

 

Figure 5.1 Road with Discrete Curvature Sections 

 

 When roadway curvature is tangent, the curvature evaluates to zero and is stable; in 

contrast, the instantaneous radius of curvature of a tangent road is infinite for a 2D Cartesian 

map, or may be related to the earth radius in 3D maps. An example of the radius vector map is 

shown in Figure 5.2. 
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Figure 5.2 Road with Discrete Radius of Curvature Sections 

 

 With the use of different technologies such as Aerial Photography, LIDAR scanning, 

GPS collection, or Road Surveying, it is possible to obtain a geospatial map of roadway 

centerlines or roadway lane edges (or limits of travelway for rural, unmarked roads). This data 

may be processed to identify the instantaneous curvature and heading angle of road points, and 

the segment length connecting consecutive points on the roadway. Continuous mathematical 

curve formulations may then be used to connect the geospatial point data in accordance with the 

curvature and heading angle calculations calculated previously. An example of this technique 

would be a parametric polynomial representation for X and Y road coordinates. An example of 

the road curvature decomposition scheme is represented in Figure 5.3. 
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Figure 5.3 Road Curvature Decomposition Example 

 

 Using the discrete curvatures calculated for each point, a piecewise-linear, continuous 

curvature model was developed. Road profiles may be deterministically modeled using 

relationships for curvature points, heading angles, and roadway segment lengths. Application of 

this technique to the creation of target paths was deemed the “Midwest Discrete Curvature” 

(MDC) method. The efficacy of this method in estimating road profiles was evaluated in the 

following sections. 

5.2 Implementation 

 Typical highway roads are designed based on AASHTO guidelines to provide a natural, 

easy-to-follow path for drivers, such that the lateral accelerations increase and decrease gradually 

as the vehicle begins and ends curved road segments [25]. The continuity of the road curvature 

and adaptability for road tangents using the MDC method were compared by calculating the 

curvature throughout a road segment constructed consistently with AASHTO design guidelines, 

then compared using real-world data from satellite photography and point selection as well as 

GPS data. All source code material can be found in Appendix A.2. 
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5.2.1 Roadway Decomposition: AASHTO Base Model 

 This model strictly used AASHTO guidelines to design an ideal highway road for a 

vehicle traversing at constant 60 mph. The curve consisted of 5 different sections that can be 

classified as: straight section, entrance transition, constant radius curve, exit transition, and 

straight section. The road path constructed in accordance with AASHTO Green Book design 

guidelines is shown schematically in Figure 5.4. 

 

 

Figure 5.4 Discretized AASHTO Base Model: Road with Velocity Vectors 

 

 Applying the MDC approach to this curve, curvature vectors were plotted with respect to 

the road segments, as shown Figure 5.5. The curvature magnitude and orthogonal heading angle 

were plotted with respect to road segments to obtain a base curvature profile, as shown in Figure 

5.6 and Figure 5.7.  
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Figure 5.5 Discretized AASHTO Base Model: Road with Curvature Vectors 

 

 

Figure 5.6 Discretized AASHTO Base Model: Curvature κ vs. Cumulative Curve Length 
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Figure 5.7 Discretized AASHTO Base Model: Orthogonal Phase Shift of Curvature Vector to 
Calculate Tangent Vectors 

 

5.2.2 Roadway Decomposition: Google Earth Images 

 Next, the efficacy of the continuous curvature model was evaluated using finely-

discretized data collected from aerial photography of a real road segment with a design speed of 

60 mph. The road segment is a part of Interstate 80 (I-80), which connects Lincoln and Omaha in 

Nebraska, as shown in Figure 5.8. The points were picked as close as possible to resemble the 

road centerline of the highway. The road profile and resulting vectors from applying the discrete 

geometry approach are shown in Figure 5.9. It is noticeable that the fine discretization of the 

road points led to some inconsistencies between consecutive tangent vectors. The curvature 

magnitude with respect to length was also plotted in Figure 5.10, and it was observed that 

magnitude deviations also increased considerably compared to the AASHTO Green Book 

theoretical road design model. However, these inconsistencies are strongly related to very short 

segment lengths relative to curve radii. By using longer segment lengths or averages spanning 

multiple longitudinal points, results are considerably smoother.  
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Figure 5.8 Google Earth: I-80 Road Example 

 

 

Figure 5.9 Google Earth Model: Road with Curvature Vectors 

 

7.265 7.27 7.275 7.28 7.285

X Coordinate (m) 10 5

4.545

4.5455

4.546

4.5465

Y
 C

oo
rd

in
at

e 
(m

)

10 6



 

52 

 

Figure 5.10 Google Earth Model: Curvature κ vs. Cumulative Curve Length 

 

 Although curvature magnitudes varied significantly due to short segment lengths, the 

velocity vector angles were observed to be smooth overall along the segments, as shown in 

Figure 5.11. 

 

 

Figure 5.11 Google Earth Model: Orthogonal Phase Shift Approach 
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 Despite noise in the segmented curvature and heading angle discretization, the resulting 

plot of estimated lane centerline matched the road profile with excellent accuracy. An overplot of 

the calculated road profile based on the MDC method is shown in Figure 5.12. 

 

 

Figure 5.12 Google Earth Model: Road with Tangent Vectors 

 

5.2.3 Roadway Decomposition: GPS Model 

 The last evaluation of the value of the MDC method utilized GPS data collected while 

driving along a road with a speed limit of 60 mph. The data was collected with a VC4000 Unit 

produced by Vericom Computers, Inc., at a frequency rate of 10 Hz. It should be noted that using 

single-trip GPS data with L1-rated accuracy provides a nominal error estimate of 1.981 m per 

data point [12], and therefore was the least accurate and smallest dataset evaluated. Nonetheless, 

applying the MDC method to identify the lane centerline coordinates demonstrated the power of 

this method in modeling road geometries, as shown in Figure 5.13, Figure 5.14, and Figure 5.15. 

It is expected that with larger datasets from multiple vehicle trips, highly precise lane centerline 

data may be identified even when using GPS without differential accuracy estimates. 
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Figure 5.13 GPS Model: Road with Curvature Vectors 

 

 

Figure 5.14 GPS Data: Tangent Vector Evaluation using Orthogonal Phase Shift Approach 

 

 

Figure 5.15 GPS Model: Road Construction with Tangent Vectors 
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5.3 Smoothing Techniques 

 On trajectory generation, many techniques focused on interpolation restrict the motion of 

vehicles to maintain a certain level of commodity and stability [38, 39]. Given that the presented 

approach obtains a heading angle based on discrete data sets for later storage, smoothing 

techniques may be required to sustain a better approximation of road centerlines while offering a 

different option to store road decompositions. 

 Many methods, such as Lagrange’s interpolation and Linear Regressions, are used in 

fitting data for analysis [40]. However, for this application, a local regression with weighted 

linear least squares was selected to maintain a minimum contribution of the data outliers. This 

avoids misrepresentation of data often provided by GPS sampling, shown in Figure 5.14 as 

peaks. 

 The data was given a span of 15% for outlier acceptance, and the resulting smoothed GPS 

data is shown in Figure 5.16, in which outliers are not part of the desired prescribed angle values. 

Smoothed data was plotted and compared to the original GPS model in Figure 5.17. It is 

noticeable how the data is easily smoothed from a GPS receiver. However, there is an initial 

swerving behavior on the heading data, which could be due to initialization of the GPS. 

 

 

Figure 5.16 GPS Data: Smoothed Tangent Vector Data 
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Figure 5.17 GPS Model: Original Data (Left) and Smoothed Data (Right) 

 

 The algorithm presented has shown that smoothing data from the heading vector 

directions is considerably more efficient than smoothing the road curvature magnitude per se. 

Thus offering a smoothing technique that could potentially improve data for vehicle reference.   

5.4 MDC Evaluation on Lane Keeping Assist System 

 A Lane Keeping Assist with Model Predictive Control (MPC) based on MATLAB was 

used to simulate the response of a bicycle model vehicle to an input curvature obtained from 

Chapter 4 [41]. The curvature will come from the same Google Earth Model explored earlier in 

section 5.2.2. Figure 5.18 previews the road with its tangent heading angles on the left, and its 

curve magnitude representation on the right.  
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Figure 5.18 Google Earth Model: Heading Angle (Left) and Curvature Magnitude (Right) 

 

 Two different run models were explored with an input velocity of 25 m/s (~55 mph), for 

traveling a distance of 6.7 km lasting about 270 seconds (~ 5 min); the only differing input was 

their prediction horizon. Prediction Horizon defines the amount of road curvature preview 

available to maneuver it. This is analogous to the amount of eyesight a person has when viewing 

a road while driving it. In conventional ADAS, the prediction horizon is limited because of the 

limited range sensors have. To represent this in the first model, a prediction horizon of 10 steps 

was used. The results of the model are shown in Figure 5.19, in which the outputs include lateral 

deviation, relative yaw angle, and steering angle.  
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Figure 5.19 Lane Keeping Assist Results with Prediction Horizon of 10 Steps 

 

 The MDC explored on Chapter 4 works under the assumption that large road sections can 

be transmitted to the vehicle, thus amplifying the prediction horizon to any desirable quantity 

independent of sensor range. A tenfold amplification was used for the second test giving 100 
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relative yaw angle and steering angle inputs of the Lane Keeping Assist is relatively similar. 

However, the lateral deviation decreases considerably for the case of a higher prediction horizon. 

This shows how the availability of increasing horizon with the MDC method, in fact increases 

Lane Keeping Assist performance.  

 

 

Figure 5.20 Lane Keeping Assist Results with Prediction Horizon of 100 Steps 
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Chapter 6 MDCR Optimization Math 

 As it was demonstrated in Chapter 4, the tangent to the curvature vectors can be used as 

reference for vehicle heading angle at an instantaneous point in time [24]. Such that heading 

tangent angle for vehicles can be obtained from a curvature profile. For this reason, being able to 

provide vehicles with pre-determined curvatures poses a new guiding factor for autonomous 

vehicle navigation such that vehicles will have a baseline road profile to navigate in the absence 

of reliable sensor information. This chapter will develop a reference scheme based on the MDC 

technique developed earlier and will add a component distinctive of road design standards. 

6.1 Preliminaries 

 In previous chapters, road curvature profiles have been explored as an efficient method to 

obtain road tangent vectors coming from multiple sources such as GPS data and Google Earth 

coordinates [24]. In conjunction with V2I technology, road profiles can be stored and referenced 

on autonomous vehicle navigation. In this section, the necessary research will be presented to 

move on with the proposed reference scheme. 

6.1.1 Baseline Static Reference 

 This baseline refers to a reference that is always available to be sent for vehicles. It does 

not change when conditions on the road can indeed change. In general, given discrete road 

coordinate data, reference tangent angles for vehicles can be provided. This reference is purely 

geometric, which often limits the real-time implementations. An example formed with GPS data 

is shown in Figure 6.1 and Figure 6.2. This method offers a sensor independent reference path 

for vehicles to follow under conditions of low sensor resolution. However, the baseline static 

reference does not account road nor dynamic factors such as friction or vehicle velocity in which 

heading angles might need to be modified to comply with driving conditions.  
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Figure 6.1 Baseline Static Reference GPS Data Example with Unsmoothed Data (left image) 
and Smoothed Data (right image). 

 

 

Figure 6.2 Baseline Static Reference Zoomed in GPS Data Example with Unsmoothed Data (left 
image) and Smoothed Data (right image). 
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6.1.2 Semi-Dynamic Road Reference 

 This road reference is the first proposed, which considers changes in road friction due to 

weather conditions. For example, when rain is present, the coefficient of rolling friction in 

between the tire and roads does change. To address this, the road reference will be adjusted and 

stored on RSUs for availability. Recalling equation (2.1), friction plays a role with the 

instantaneous curvature and current vehicle velocity. This paper will detail out how to create a 

semi-dynamic road reference based on particle dynamics (independent of vehicle specific 

parameters), to improve the baseline static reference. The obtained semi-dynamic road reference 

will serve as the speed a vehicle should traverse a curve under arbitrary friction changes, along 

with the already developed baseline static reference.  

6.1.3 Dynamic Road Reference 

 This second road reference considers all previous models along with vehicle specific 

parameters such as understeer gradients, track width, and vehicle length. Current RSU research 

has shown that it is possible to exchange data wirelessly such that it will be assumed for this 

model. Thus, this dynamic road reference assumes that the RSU can obtain such information 

from a vehicle. With a model combining equations (2.1) and (2.2), the dynamic road reference 

takes an input from vehicles along with the previous models and creates a reference velocity path 

and heading angle for safe travel. 

6.2 Mathematical Road Curvature Models 

 Proceeding with the proposed Semi-Dynamic and Dynamic Road References, a 

mathematical curvature model needs to be established in accordance to the trajectory 

requirements of autonomous vehicles. To construct the road reference models, it is first 
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necessary to understand the curvature information obtained from section 2.3.1 and establish a 

connection in between this baseline and the subsequent models.  

 Trajectory generation models in autonomous vehicle research often take the quintic 

polynomial approximation [42, 43]. These quintic models often formulate the curvature or the 

position in 2-dimensional Euclidean space of a car such that: 

 

𝜅𝜅(𝑠𝑠) = 𝑎𝑎0 + 𝑎𝑎1𝑠𝑠 + 𝑎𝑎2𝑠𝑠2 + 𝑎𝑎3𝑠𝑠3 + 𝑎𝑎4𝑠𝑠4 + 𝑎𝑎5𝑠𝑠5 

 

 Studies of horizontal curves as shown in Figure 1.1 indicate that most designs are made 

of curvatures with constant, and/or linear slopes. Differing from driving considerations, quintic 

polynomials do not offer the curvature characteristics for which a road is designed. To create a 

road reference that relates road to vehicle parameters, the following mathematical curvature 

models are proposed: 

 

Piecewise linear model 1: 

𝜅𝜅1 = �
𝑥𝑥5

𝑥𝑥2 − 𝑥𝑥1
� (𝑠𝑠 − 𝑥𝑥1)[𝜑𝜑(𝑠𝑠 − 𝑥𝑥1) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥2)] + 𝑥𝑥5[𝜑𝜑(𝑠𝑠 − 𝑥𝑥2) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥3)]

+ ��
𝑥𝑥5

𝑥𝑥4 − 𝑥𝑥3
� (−𝑠𝑠 + 𝑥𝑥3) + 𝑥𝑥5� [𝜑𝜑(𝑠𝑠 − 𝑥𝑥3) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥4)] 

M.1  

 

Piecewise linear model 2: 

𝜅𝜅2 = �
𝑥𝑥4

𝑥𝑥2 − 𝑥𝑥1
� (𝑠𝑠 − 𝑥𝑥1)[𝜑𝜑(𝑠𝑠 − 𝑥𝑥1) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥2)] + 𝑥𝑥4[𝜑𝜑(𝑠𝑠 − 𝑥𝑥2) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥3)] M.2 

 

Where:  
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𝜑𝜑(𝑠𝑠 − 𝑎𝑎) = Unit Step Function with a shift of 𝑎𝑎 ∈ ℝ 
𝑥𝑥𝑖𝑖 = Values that determine the shape of the curvature function with 𝑖𝑖 ∈ [1,5] 

 

 Both models were mathematically designed to be continuous for all 𝑠𝑠 but are only 

intended to model a single road section of 𝑠𝑠 ∈ [𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒] which should contain only one 

turning motion. M.1 offers the flexibility of having its 𝑥𝑥𝑖𝑖 parameters to be easily identified as 

basic geometric properties of a trapezoid. M.2 was designed to be the simplest model available 

that can represent roads with minimum use of 𝑥𝑥𝑖𝑖 parameters. M.1 is illustrated in Figure 6.3 for 

the general model 𝜅𝜅1 along 𝑠𝑠 with parameters 𝑥𝑥𝑖𝑖. M.2 can be easily visualized the same as M.1 

but without the last downward slope section.  

 

 

Figure 6.3 General Curvature M.1, with Design Values 

 

 A detailed elaboration of the trapezoid math is available in Appendix A.3. 

6.3 Road Guidance Optimization Problem Formulation 

 All road reference models proposed need to shape the previous curvature models to 

discrete curvature data through least squares minimization. With the mathematical curvature 
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models established, two optimization algorithms are proposed to create the semi-dynamic road 

reference and dynamic road reference. 

6.3.1 Least Squares Fitting 

 The models are subject to an unconstrained Least Squares Error - Minimization problem, 

denoted as Pr.1, such that: 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

‖𝜅𝜅𝑚𝑚(𝑠𝑠) − 𝜅̂𝜅[𝑠𝑠]‖2 Pr.1  

Where: 
 𝜅𝜅𝑚𝑚(𝑠𝑠) =  Road curvature model 𝑚𝑚 in terms of segment 𝑠𝑠 and constants 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 
𝜅̂𝜅[𝑠𝑠] = Discrete road sampled curvature data  

 

 This curve fitting minimization problem denoted as Pr.1 is used to test analytical 

curvature models M.1 and M.2. It is important to note that the models 𝜅𝜅𝑚𝑚 can be either linear or 

non-linear. Pr.1 will focus on representing models 𝜅𝜅𝑚𝑚(𝑥𝑥1, … 𝑥𝑥𝑛𝑛) as a representation of any 

generic road data input. The next two sections 6.3.2 and 6.3.3 address a second optimization 

problem denoted as Pr.2 that will depend on the objective function selection. 

6.3.2 Semi-Dynamic Road Reference Numerical Optimization Routine 

 As a vehicle increases speed, the friction developed in between the road and the tires 

decreases. This decrease in available friction increases the likelihood of a vehicle departing from 

the road on a curve. Addition of superelevation on roads reduces the portion of forces due to 

longitudinal accelerations. When the coefficient of friction decreases due to weather factors such 

as the rain or snow, the available velocity for a vehicle to maintain stability decreases as well. 

The Green Book has taken into consideration analysis on friction levels on wet surfaces [25]. 

However, variability in tire conditions and road degradation considerably affect vehicle handling 

during cornering. 
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 For these reasons, the semi-dynamic road reference model uses Equation (2.1) as an 

objective function to establish a relationship between current Green Book standards and 

instantaneous vehicle curvature. In general, there exists velocity ranges, and steering wheel 

angles such that extra constraints could be added to Pr.2 in the following manner: 

 

𝑚𝑚𝑚𝑚𝑚𝑚 
𝑦𝑦

𝑦𝑦1
2

𝑔𝑔
𝜅𝜅𝑚𝑚(𝑠𝑠) −

𝜇𝜇 + 0.01𝑒𝑒
1 − 0.01𝜇𝜇𝜇𝜇

 Pr.2 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑦𝑦1 < 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚      &       𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑦𝑦2 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 C.1 

 

 In practice, these constraints will be inactive for the most part. In fact, for this Semi-

Dynamic routine, steering angle does not play a role in the optimization routine Pr.2. However, 

these can be defined by regulatory standards and are important to denote because dynamics’ 

formulas do not account for speed limit regulations. In other words, going at a slow speed such 

as 45-mph on a 75-mph road will not violate dynamic stability requirements but might pose a 

risk for upcoming traffic. The objective function minimization at each road segment iteratively is 

presented with the pseudo-code in Figure 6.4. 
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Figure 6.4 Semi-Dynamic Road Reference Numerical Optimization Routine Pseudo-Code 

 

6.3.3 Dynamic Road Reference Numerical Optimization Routine 

 Vehicle dynamic stability is related to curvature models through (2.1) and (2.2). For this 

routine, Pr. 2 will use Equation (2.2) as an objective function to optimize specific-vehicle 

performance under different road conditions. Where vehicle velocity 𝑣𝑣 = 𝑦𝑦1 and steering wheel 

angle 𝛿𝛿 = 𝑦𝑦2 for every segment on 𝜅𝜅𝑚𝑚(𝑠𝑠) such that: 

 

𝑚𝑚𝑚𝑚𝑚𝑚 
𝑦𝑦

 𝑦𝑦2 −  (57.3𝐿𝐿 + 𝜂𝜂 𝑦𝑦1
2 ) 𝜅𝜅𝑚𝑚(𝑠𝑠) Pr.2 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑦𝑦1 < 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚      &       𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑦𝑦2 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 C.1 

𝑦𝑦1
2

𝑔𝑔
𝜅𝜅𝑚𝑚(𝑠𝑠) −

𝜇𝜇 + 0.01𝑒𝑒
1 − 0.01𝜇𝜇𝜇𝜇

= 0 C.2 
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 Pr. 2 is a non-linear constrained optimization problem in which the vehicle parameters 

(𝐿𝐿, 𝜂𝜂) and road parameters (𝜇𝜇, 𝑒𝑒) are regarded as constants for any generic road/vehicle. In this 

second routine, the particle dynamics’ equation is set as a constraint. Pr. 2 will find the optimized 

combination for both traveling velocity and wheel angle that uses the model 𝜅𝜅𝑚𝑚(𝑠𝑠) as part of 

their process. It is important to note that Pr. 2 must be solved iteratively as the vector 𝜅𝜅𝑚𝑚 

contains many values. The following pseudo-code was created to illustrate this proposed 

optimization routine. 

 

 

Figure 6.5 Dynamic Road Reference Numerical Optimization Routine Pseudo-Code. 
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Chapter 7 MDCR Optimization Implementation  

 The codes and datasets used in this section can be found in Appendix A.4. Chapter 7 uses 

all the proposed mathematical models and routines from subsections 6.1-6.3 and implements 

them accordingly.  

7.1 Least Squares Fitting on M.1 and M.2  

 To exemplify Pr.1, a sample curvature data was generated that resembles a compound 

curve (shown in Figure 7.1) with Gaussian noise added. These models will be defined with 

starting points 𝑥𝑥𝑖𝑖∀ 𝑖𝑖 ∈ [1, 𝑛𝑛] where 𝑛𝑛 defines the number of shape function values. It is crucial to 

note, that for convergence of Pr.1 with any model M.X, the initial value guesses must not be 

repeated and be incrementing values so that 𝑥𝑥𝑗𝑗 > 𝑥𝑥𝑗𝑗−1 ∀ 𝑗𝑗 ∈ [2, 𝑛𝑛 − 1], excluding 𝑥𝑥𝑛𝑛 because it 

is dependent on the maximum curvature, rather than segment length.  

 A sample optimized M.1 is shown in Figure 7.1 along with Table 7.1 having its 

corresponding coefficients. The behavior of M.1 under many datasets was tested, and it is 

noticeable how curves that lack a downward slope at the final segment length are still able to be 

modeled by M.1. The model can do that by providing a combination of 𝑥𝑥3 and 𝑥𝑥4 so that the 

section is approximately constant.  

 

Table 7.1 Values obtained for M.1. 

Value 
Initial 
Guess Optimized 

𝑥𝑥1 0.9 0.4785 
𝑥𝑥2 2.9 6.0857 
𝑥𝑥3 6 4.7662 
𝑥𝑥4 10 245.0074 
𝑥𝑥5 max(𝜅𝜅) 11.213 
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Figure 7.1 Optimization of Curvature M.1 

 

 A sample optimized M.2 is shown in Figure 7.2 along with Table 7.2 having its 

corresponding coefficients. The behavior of M.2 was not stable enough to fit the data properly. 

The reason being that 𝑥𝑥2 and 𝑥𝑥3 converge to relatively close values which cause this model to 

not fit the data. Thus, M.2 was not studied for the optimization routines shown in the next 

subsections. 

 

Table 7.2 Values obtained for M.2. 

Value 
Initial 
Guess Optimized 

𝑥𝑥1 0.9 0.4689 
𝑥𝑥2 2.9 5.9741 
𝑥𝑥3 6 6.0000 
𝑥𝑥4 max(𝜅𝜅) 10.9656 
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Figure 7.2 Optimization of Curvature M.2. 

 

7.2 Selected Model M.1 on Datasets 

 Least Squares Fitting was applied to a mathematically designed curve that is compliant 

with the Green Book standards. Figure 7.3 shows the curve with its corresponding reference 

tangent angles and the obtained fitted curvature model. It is noticeable that the mathematical 

construction of this road will lead to a perfect fit with no noise. The primary purpose of this was 

to study the robustness of the routine to fit curvature models under different initial guesses. Since 

this curve is mathematically compliant to road designs, the curvature profile represents a 

transition spiral, followed by a constant radius curve, an exit transition spiral, and a last segment 

of straight line.  
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Figure 7.3 Green Book Road with Tangent Angles (left image) and Fitted Curvature Profile 
(right image) 

 

 With the model M.1 selected, the remainder of the routine uses appropriate data sets to 

obtain road representations for both semi-dynamic and dynamic routines. In general, there is a 

vast availability for road recognition that estimates road centerlines from satellite images, GPS 

data, or any road coordinate collection system [44, 45]. Based on maximum Green Book 

cornering limits, it is possible to sample a discrete number of points of about 12 points per km  or 

about 1 every 1/12 of a km [25]. For this paper, a sample reference obtained from a Google Earth 

Satellite software is utilized that satisfies these requirements.  

 The sample-selected road comes from highway I-80 connecting the cities of Lincoln and 

Omaha in Nebraska (USA). Sample road is shown in Figure 7.4 (left) with its appropriate 

heading angles as calculated from previous studies [24]. The curvature magnitude per segment 

length is shown in the right of Figure 7.4. Changes in amplitude for this curvature trace come 

from how the road curves. In practice, straight roads will never achieve zero curvature, which led 

to values within a range of ±1e-3 be considered as straight segments. 
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Figure 7.4 Google Earth Road with Tangent Angles (left image) and Fitted Curvature Profile 
(right image). 

 

 Typical highways are built in conjunction to the available landscape space for minimizing 

disruption of natural areas. This permits roads discretization on sequential curvature changes as 

shown in the right of Figure 7.5. Multiple curvature changes are to be found within long road 

sections requiring them to be separated into basic curvature segment components. In this dataset, 

the highest curvature section was found and analyzed. This section was selected as the highest 

average on curvature per rate of change in segment length. Alternative options include selecting 

initial guesses spanned on a user-selected segment length. The highest curvature road segment is 

shown in Figure 7.5 (left) and a smoothed data portion of its curvature profile in Figure 7.5 

(right).  
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Figure 7.5 Reduced Google Earth Road (left image) and Corresponding Curvature Profile (right 
image) 

 

 With the curvature profile obtained, Least Squares Fitting yields the curvature model to 

be used in the two subsequent optimization routines. This fitted model is shown in Figure 7.6 

with its corresponding initial guesses in Table 7.3. It is noted that the optimized values do not 

vary significantly. This indicates that the selection of initial guesses is crucial for the overall 

shape of the optimized fitted curvature model. 

  

Table 7.3 Values obtained for Curvature Model 

Value 
Initial 
Guess Optimized 

𝑥𝑥1 3200 3176.83 
𝑥𝑥2 3500 3503.55 
𝑥𝑥3 4000 4017.41 
𝑥𝑥4 4200 4204.49 
𝑥𝑥5 max(𝜅𝜅) 1.245e-3 
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Figure 7.6 Fitted Response to Curvature on Road Section 

 

7.3 Semi-Dynamic Road Reference Results  

 This optimization routine is based from Figure 6.4 and creates a reference velocity profile 

dependent on the curve’s shape and the current road friction levels. Only road parameters 

influence what the reference speed of a vehicle should be. Table 7.4 offers a summary of the 

parameters given to the Semi-Dynamic Road Reference routine.  

 Two different road inputs were explored, a mathematically designed road based off the 

Green Book and a Google Earth data road. The results from the Pseudo-Code in Figure 6.4 were 

implemented in MATLAB and the results of both data samples are shown below in Figure 7.7. 

The road profile for the Green Book road is compliant to current street designs, such that the 

velocity required to go through it should be constant until it reaches the exit curve into a straight 

line. As expected for the Green Book model (Figure 7.7 top), a moderate level that considers the 

current road elevation and friction is first obtained followed by an increase on the exit of the 

curve. For the Google Earth data (Figure 7.7 bottom), the road starts with an initial velocity 

predefined by the previous road factors, such that when the vehicle enters the curve, a decrease is 

expected, followed by the same behavior as in the Green Book Model.  
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Table 7.4 Variables obtained for Curvature Model 

Road 
Parameter 

Quantity 

𝑒𝑒 6% 
𝜇𝜇 0.3 

 

 

 

Figure 7.7 Dynamic Routine Optimized Velocity Profiles for Green Book road (top image) and 
Google Earth Model (bottom image) 

 

7.4 Dynamic Road Reference Results 

 This routine is based on Figure 6.5, which optimizes the reference velocity based on 

vehicle-specific parameters and road parameters. The Green Book mathematically constructed 

road will be illustrated first with a sample optimization problem followed by the Google Earth 

model.  

 To illustrate the optimization problem to be solved iteratively, a single data point from 

𝜅𝜅1(𝑠𝑠) is used to generate the contour plot in Figure 7.8, with ranges suitable for C.1. It is noted 
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that the minimizer lies somewhere in the line generated from the intersection of equation (2.1) 

and equation (2.2). Table 7.5 provides the road and vehicle parameters used throughout this 

optimization routine [46]. It is important to remark that the model is unbounded without the 

constraints that will lead to infeasible solutions. 

 

Table 7.5 Input Parameters for M.1. 

Parameter  Quantity Unit 
𝜅𝜅 0.0167 m-1 

𝑈𝑈𝑈𝑈���� 1.95 degrees 
𝐿𝐿 2.5 m 
𝑔𝑔 9.81 m/s2  
𝑒𝑒 6 % 
𝜇𝜇 0.4 ---- 

 

 

 

Figure 7.8 Contour Plots for M.1 
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 This optimization routine obtains an angle of 3 degrees with a velocity of 16.63 m/s (36 

mph), which is a compliant velocity for the input curvature of 0.0167 m-1. To obtain a reference 

velocity and angle profiles, the routine needs to be implemented to a whole dataset of segment 

lengths and curvatures as opposed to a discrete curvature point. Section 7.3 input data, and 

parameters from Table 7.5 were used to solve Pr.1 and obtain an optimized velocity profile. This 

dataset was implemented with the Pseudo-Code shown in Figure 6.5, and its results are shown 

below in Figure 7.9. 

 A typical spiral curve contains a curvature profile characterized by piecewise functions 

such as M.1. Results for the Green Book optimized velocity (Figure 7.9 top) shows a closer 

resemblance to real-world driving scenarios such that smoother transitions are obtained by 

traversing the curve with a deceleration during the constant curvature segment. The last change 

reflects an adjustment of the spiral curve coming to a straight line such that optimal velocity 

follows standard velocity limits. However, in controller applications it would serve as an 

interpolating value to arrive for the safest speed while exiting the curve. 

 The results of the Google Earth model (Figure 7.9 bottom), shows the velocity expected 

for a wider curve radius as opposed to a short one. As the turn radius becomes bigger, optimal 

variables adjust an increase on velocity rather than a deceleration. The results of this model, 

again, can be used as a reference for controllers to interpolate appropriate exit maneuvering 

speeds and braking pressures to resemble the proper curve segment behavior. 
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Figure 7.9 Dynamic Routine Optimized Velocity Profiles for Green Book Road (top image) and 
Google Earth Model (bottom image) 

 

7.5 Chapter Conclusions 

 In this chapter, two optimization routines for generating guidance profiles were presented 

and analyzed. Initially, both routines utilize proposed curvature profiles obtained from roads and 

adjusted through least squares fitting. The first routine called Semi-Dynamic Road Reference 

utilizes road design standards to determine reference velocities in combination with heading 

angles from previous studies. The second routine called Dynamic road Reference uses the first 

routine in combination with vehicle dynamics to obtain a vehicle-specific reference velocity 

profile. Both routines were evaluated with two different datasets; an AASHTO mathematical 
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compliant profile, and a Google Earth extracted data profile. Differences were observed on the 

outcomes for both datasets, in which the initial conditions of the road shape are attributed to 

create different initial velocities. Furthermore, road total segment length was found to be a 

crucial factor on how the curvature profile should be modeled.  

 Possible ramifications from this study include the relationship on how the Google Earth 

empirical data compares to the AASHTO ideal model under similar road profiles such that road 

design models are derived from empirical data. Similarly, superposition of the mathematical 

models for more complex M.X models is yet to be explored. 

 Further implementation of this method could result in an upgrade for autonomous vehicle 

technology in which weather disruptions and poor road markings could stop being a problem for 

future vehicle generations. In conclusion, the presented optimization routines offer a reference 

profile for guidance in highway roads. 
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Chapter 8 Conclusions and Future Work 

 In this this report, a method for obtaining road reference paths was explained and 

detailed. This road reference was started from any general map source (aerial photography, GPS, 

scans, etc.) followed by a geometric formulation denoted as MDC. This geometric formulation 

was explored from multiple sources, and then determined smoothing techniques for its 

improvement on heading vehicle angle. The MDC method was evaluated with an MPC proving 

an improvement in lateral deviation. The next step followed obtaining an optimized reference 

using vehicle dynamics and AASHTO standards. The optimized algorithm was denoted as 

MDCR and offered a heading angle path along with suggested velocities that go according to 

vehicle and road specifications. The last chapter explored different map sources with the MDCR 

method to determine its feasibility from multiple sources. The general conclusions offer a 

reliable technique that can be applied to autonomous vehicles with V2I technology. Future work 

for this project will include creating an Application Programming Interface (API) for the 

implementation in real scale mapping. This API will be developed with the algorithms denoted 

from this Year 3 report and will be tested with DOT representatives that are willing to explore 

this avenue for CAV improvement.   
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Appendix A  

A.1 Formulation Chapter 3: Acceleration in Canonical Form 

 

Recalling the canonical representation of a curve from Chapter 3:  

𝑥𝑥(𝑠𝑠) = �𝑠𝑠 −
𝜅𝜅2𝑠𝑠3

6
� 𝑻𝑻 + �

𝑠𝑠2

2
𝜅𝜅 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑠𝑠3

6
� 𝑵𝑵 + �

𝜅𝜅𝜅𝜅𝑠𝑠3

6
� 𝑩𝑩 + 𝑜𝑜(𝑠𝑠3) 

𝑥𝑥1(𝑠𝑠) = 𝑠𝑠 −
𝜅𝜅2

6
𝑠𝑠3 + 𝑜𝑜(𝑠𝑠3) 

𝑥𝑥2(𝑠𝑠) =
𝜅𝜅
2

𝑠𝑠2 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1
6

𝑠𝑠3 + 𝑜𝑜(𝑠𝑠3) 

𝑥𝑥3(𝑠𝑠) =  
𝜅𝜅𝜅𝜅
6

𝑠𝑠3 + 𝑜𝑜(𝑠𝑠3) 

 

Assuming first order terms, the following representation is found: 

𝜙𝜙 = 𝑠𝑠𝑻𝑻 + �
𝜅𝜅
2

𝑠𝑠2� 𝑵𝑵 + �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3� 𝑩𝑩   

 

It is now desired to find: 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑡𝑡2 =

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �𝑥𝑥1(𝑠𝑠) + 𝑥𝑥2(𝑠𝑠) + 𝑥𝑥3(𝑠𝑠)� =
𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑻𝑻) +
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑵𝑵� +
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑩𝑩� 

 

At this point forward, bolding will be omitted to ease writing, and denoting that T, N, and B will 

be unit vectors. To ease the derivatives, the terms will be done separately. 

 

First Term: 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑠𝑠) =
𝑑𝑑
𝑑𝑑𝑑𝑑

 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑇𝑇 + 𝑠𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑠𝑠) =
𝑑𝑑
𝑑𝑑𝑑𝑑

 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑇𝑇 + 𝑠𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� = �
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2 𝑇𝑇 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑠𝑠
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑡𝑡2  � 
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𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑠𝑠) = �𝑠̈𝑠 𝑇𝑇 + 2𝑠̇𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑠𝑠
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑡𝑡2  � = �𝑠̈𝑠 𝑇𝑇 + 2𝑠̇𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝑠𝑠
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑠𝑠2

𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2   � 

�𝑠̈𝑠 𝑇𝑇 + 2𝑠̇𝑠2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑠𝑠𝑠̈𝑠
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑠𝑠2   � = �𝑠̈𝑠 𝑇𝑇 + 2𝑠̇𝑠2𝜅𝜅𝜅𝜅 + 𝑠𝑠𝑠̈𝑠

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜅𝜅𝜅𝜅) �

= (𝑠̈𝑠 𝑇𝑇 + 2𝑠̇𝑠2𝜅𝜅𝜅𝜅 + 𝑠𝑠𝑠̈𝑠𝜅𝜅(−𝜅𝜅𝜅𝜅 + 𝜏𝜏𝜏𝜏 )) = 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇:  
𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑠𝑠) =   (  (1 − 𝑠𝑠𝑠̈𝑠𝜅𝜅2)𝑠̈𝑠𝑇𝑇 + 2𝑠̇𝑠2𝜅𝜅𝜅𝜅 + 𝜏𝜏𝜏𝜏 ) 

 

Second Term: 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁� =
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠𝑁𝑁 +
𝜅𝜅
2

𝑠𝑠2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 � =
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠𝑁𝑁 +
𝜅𝜅
2

𝑠𝑠2(−𝜅𝜅𝜅𝜅 + 𝜏𝜏𝜏𝜏)� 

=
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠𝑁𝑁 −
𝜅𝜅2

2
𝑠𝑠2𝑇𝑇 +

𝜅𝜅
2

𝑠𝑠2𝜏𝜏𝜏𝜏� 

 

This will require taking the four terms separately:  

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁� = [1] + [2] + [3] + [4] 

[1]     
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅
2

𝑠𝑠2 𝑁𝑁� = �
𝜅̈𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 +
𝜅̈𝜅
2

𝑠𝑠2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 � = �
𝜅̈𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 +
𝜅̈𝜅
2

𝑠𝑠2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  � → 

�
𝜅̈𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 +
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠(−𝜅𝜅𝜅𝜅 + 𝜏𝜏𝜏𝜏)� = �
𝜅̈𝜅
2

𝑠𝑠2𝑁𝑁 + 𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 −
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠𝜅𝜅𝜅𝜅 +
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠𝜏𝜏𝜏𝜏)� 

[1]    
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅
2

𝑠𝑠2𝑁𝑁� = �−
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠𝜅𝜅𝜅𝜅 + �
𝜅̈𝜅
2

𝑠𝑠 + 𝜅̇𝜅𝑠̇𝑠� 𝑠𝑠𝑠𝑠 +
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠𝜏𝜏𝜏𝜏)� 
  

[2]  
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜅𝜅𝜅𝜅𝑠̇𝑠𝑁𝑁) = �𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 + 𝜅𝜅𝑠̇𝑠2𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̈𝑠𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  �

= �𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 + 𝜅𝜅𝑠̇𝑠2𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̈𝑠𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  � → 
(𝜅̇𝜅𝑠𝑠𝑠̇𝑠𝑁𝑁 + 𝜅𝜅𝑠̇𝑠2𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̈𝑠𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠2(−𝜅𝜅𝜅𝜅 + 𝜏𝜏𝜏𝜏) ) → 

[2]   
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜅𝜅𝜅𝜅𝑠̇𝑠𝑁𝑁)  = (−𝑠𝑠𝑠̇𝑠2𝜅𝜅2𝑇𝑇 + (𝜅̇𝜅𝑠𝑠𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 + 𝜅𝜅𝜅𝜅𝑠̈𝑠)𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠2𝜏𝜏𝜏𝜏 ) 
 

[3]   
𝑑𝑑
𝑑𝑑𝑑𝑑

�−
𝜅𝜅2

2
𝑠𝑠2𝑇𝑇� = − �

𝜅̇𝜅
2

𝑠𝑠2𝑇𝑇 + 𝜅𝜅𝜅𝜅𝑠̇𝑠𝑇𝑇 +
𝜅𝜅2

2
𝑠𝑠2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 � = − �

𝜅̇𝜅
2

𝑠𝑠2𝑇𝑇 + 𝜅𝜅𝜅𝜅𝑠̇𝑠𝑇𝑇 +
𝜅𝜅2

2
𝑠𝑠2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  � 

− �
𝜅̇𝜅
2

𝑠𝑠2𝑇𝑇 + 𝜅𝜅𝜅𝜅𝑠̇𝑠𝑇𝑇 +
𝜅𝜅3

2
𝑠𝑠2𝑠̇𝑠𝑁𝑁   � 
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[3]   
𝑑𝑑
𝑑𝑑𝑑𝑑

�−
𝜅𝜅2

2
𝑠𝑠2𝑇𝑇� = − ��

𝜅̇𝜅
2

𝑠𝑠 + 𝜅𝜅𝑠̇𝑠� 𝑠𝑠 𝑇𝑇 +
𝜅𝜅3

2
𝑠𝑠2𝑠̇𝑠𝑁𝑁� 

[4]   
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅𝜅
2

𝑠𝑠2𝜏𝜏𝜏𝜏� = �
𝜅̇𝜅
2

𝑠𝑠2𝜏𝜏𝜏𝜏 + 𝜅𝜅𝑠̇𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏𝐵𝐵 +
𝜅𝜅
2

𝑠𝑠2𝜏𝜏 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�

= �
𝜅̇𝜅
2

𝑠𝑠2𝜏𝜏𝜏𝜏 + 𝜅𝜅𝑠̇𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏𝐵𝐵 +
𝜅𝜅
2

𝑠𝑠2𝜏𝜏 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�

= � �
𝜅̇𝜅
2

𝑠𝑠2𝜏𝜏 + 𝜅𝜅𝑠̇𝑠𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏� 𝐵𝐵 +
𝜅𝜅
2

𝑠𝑠2𝜏𝜏 𝑠̇𝑠(−𝜏𝜏𝜏𝜏)� 

[4]     
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅𝜅
2

𝑠𝑠2𝜏𝜏𝜏𝜏� = � �
𝜅̇𝜅
2

𝑠𝑠2𝜏𝜏 + 𝜅𝜅𝑠̇𝑠𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏� 𝐵𝐵 −
𝜅𝜅
2

𝑠𝑠2𝜏𝜏2 𝑠̇𝑠𝑁𝑁� 

 

Combining all four terms: 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁� = [1] + [2] + [3] + [4] 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇:    �−
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠𝜅𝜅𝜅𝜅 + �
𝜅̈𝜅
2

𝑠𝑠 + 𝜅̇𝜅𝑠̇𝑠� 𝑠𝑠𝑠𝑠 +
𝜅̈𝜅
2

𝑠𝑠2𝑠̇𝑠𝜏𝜏𝜏𝜏)�

+ (−𝑠𝑠𝑠̇𝑠2𝜅𝜅2𝑇𝑇 + (𝜅̇𝜅𝑠𝑠𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 + 𝜅𝜅𝜅𝜅𝑠̈𝑠)𝑁𝑁 + 𝜅𝜅𝜅𝜅𝑠̇𝑠2𝜏𝜏𝜏𝜏 )

− ��
𝜅̇𝜅
2

𝑠𝑠 + 𝜅𝜅𝑠̇𝑠� 𝑠𝑠 𝑇𝑇 +
𝜅𝜅3

2
𝑠𝑠2𝑠̇𝑠𝑁𝑁� + � �

𝜅̇𝜅
2

𝑠𝑠2𝜏𝜏 + 𝜅𝜅𝑠̇𝑠𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏� 𝐵𝐵 −
𝜅𝜅
2

𝑠𝑠2𝜏𝜏2 𝑠̇𝑠𝑁𝑁� 

 

Simplifying: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇: 
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁�

=    ��(𝜅̈𝜅𝑠̇𝑠𝜅𝜅 + 𝜅̇𝜅) �−
1
2

𝑠𝑠2� + (𝑠̇𝑠2𝜅𝜅2 + 𝜅𝜅𝑠̇𝑠)(−𝑠𝑠)� 𝑇𝑇

+ �(𝜅̈𝜅 − 𝜅𝜅3𝑠̇𝑠 − 𝜅𝜅𝜏𝜏2 𝑠̇𝑠)
1
2

𝑠𝑠2 + 2𝑠𝑠𝜅̇𝜅𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 + 𝜅𝜅𝜅𝜅𝑠̈𝑠� 𝑁𝑁

+ ��
𝜅̈𝜅
2

𝑠𝑠𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 +
𝜅̇𝜅
2

𝑠𝑠 + 𝜅𝜅𝑠̇𝑠� 𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏� 𝐵𝐵� 

 

Third Term: 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝐵𝐵� =
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜅𝜅
6

3𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
6

𝑠𝑠3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 �

=
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
6

𝑠𝑠3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  � 
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=
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑠̇𝑠(−𝜏𝜏𝜏𝜏)� 

 

This will require taking the four terms separately  

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁� = {1} + {2} + {3} + {4} 

 

First term: 

{1}   
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵� = �
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3𝐵𝐵 +

𝜅̇𝜅𝜏𝜏
6

3𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 

�
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3𝐵𝐵 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�

= �
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3𝐵𝐵 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3(−𝜏𝜏𝜏𝜏)𝑠̇𝑠 � 

{1}    
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵� = �
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3𝐵𝐵 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3(−𝜏𝜏𝜏𝜏)𝑠̇𝑠 � 
 

{2}    
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵� = �
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

3𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 

�
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� = �
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3(−𝜏𝜏𝜏𝜏)𝑠̇𝑠� 

{2}   
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵� = �
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3(−𝜏𝜏𝜏𝜏)𝑠̇𝑠� 
  

{3}   
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵� = �
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

2𝑠𝑠𝑠̇𝑠2𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 

�
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�

= �
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠2(−𝜏𝜏𝜏𝜏)� 

{3}    
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵� =  �
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠2(−𝜏𝜏𝜏𝜏)� 
 

{4}   
𝑑𝑑
𝑑𝑑𝑑𝑑

� 
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑠̇𝑠(−𝜏𝜏𝜏𝜏)�

= − �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠𝑁𝑁 +

𝜅𝜅2𝜏𝜏𝜏̇𝜏
6

𝑠𝑠3𝑠̇𝑠𝑁𝑁 +
𝜅𝜅𝜏𝜏2

6
3𝑠𝑠2𝑠̇𝑠2𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 

= − �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠𝑁𝑁 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠𝑠3𝑠̇𝑠𝑁𝑁 +
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 
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{4}   
𝑑𝑑
𝑑𝑑𝑑𝑑

� 
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑠̇𝑠(−𝜏𝜏𝜏𝜏)�

= − �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠𝑁𝑁 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠𝑠3𝑠̇𝑠𝑁𝑁 +
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠2(−𝜏𝜏𝜏𝜏)� 

 

Combining Terms: 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁� = {1} + {2} + {3} + {4} 
 

𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇:     
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝑠̇𝑠(−𝜏𝜏𝜏𝜏)� = 

�
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3𝐵𝐵 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅̇𝜅𝜏𝜏
6

𝑠𝑠3(−𝜏𝜏𝜏𝜏)𝑠̇𝑠 �

+ �
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3(−𝜏𝜏𝜏𝜏)𝑠̇𝑠�

+ �
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠𝐵𝐵 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠𝐵𝐵 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̇𝑠2(−𝜏𝜏𝜏𝜏)�

− �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠𝑁𝑁 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠𝑠3𝑠̇𝑠𝑁𝑁 +
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠𝑁𝑁 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠2(−𝜏𝜏𝜏𝜏)� 

 

Simplifying: 

�
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠� 𝐵𝐵 −
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠 𝑁𝑁 + �

𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠� 𝐵𝐵 −
𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝑠̇𝑠𝜏𝜏 𝑁𝑁

+ �
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠� 𝐵𝐵 −
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2𝑁𝑁

− �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠𝑠3𝑠̇𝑠 +
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠 −

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠2� 𝑁𝑁 

 

Grouping: 

�
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠� 𝐵𝐵 + �
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠� 𝐵𝐵

+ �
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠� 𝐵𝐵 −
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠 𝑁𝑁 −

𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2𝑁𝑁 −

𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝑠̇𝑠𝜏𝜏 𝑁𝑁

− �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠𝑠3𝑠̇𝑠 +
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠 −

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠2� 𝑁𝑁 

 
𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇:  
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   ��
𝜅̈𝜅𝜏𝜏
6

𝑠𝑠3 +
𝜅̇𝜅𝜏̇𝜏  

6
𝑠𝑠3 +

𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠 +
𝜅̇𝜅𝜏̇𝜏
6

𝑠𝑠3 +
𝜅𝜅𝜏̈𝜏
6

𝑠𝑠3 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠 +
𝜅̇𝜅𝜏𝜏
2

𝑠𝑠2𝑠̇𝑠 +
𝜅𝜅𝜏̇𝜏
2

𝑠𝑠2𝑠̇𝑠 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2 +
𝜅𝜅𝜅𝜅
2

𝑠𝑠2𝑠̈𝑠� 𝐵𝐵 

− �
𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠𝑠3𝑠̇𝑠 +
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2 +

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̈𝑠 −

𝜅𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠2 + +

𝜅̇𝜅𝜏𝜏2

6
𝑠𝑠3𝑠̇𝑠

+
𝜅𝜅𝜏𝜏2

2
𝑠𝑠2𝑠̇𝑠2 +

𝜅𝜅𝜏̇𝜏
6

𝑠𝑠3𝑠̇𝑠𝜏𝜏 � 𝑁𝑁� → 

   ��  �
𝜅̈𝜅𝜏𝜏
6

+
𝜅̇𝜅𝜏̇𝜏  

6
+

𝜅̇𝜅𝜏̇𝜏
6

+
𝜅𝜅𝜏̈𝜏
6

� 𝑠𝑠3 + �
𝜅̇𝜅𝜏𝜏
2

𝑠̇𝑠 +
𝜅𝜅𝜏̇𝜏
2

𝑠̇𝑠 +
𝜅̇𝜅𝜏𝜏
2

𝑠̇𝑠 +
𝜅𝜅𝜏̇𝜏
2

𝑠̇𝑠 +
𝜅𝜅𝜅𝜅
2

𝑠̈𝑠� 𝑠𝑠2 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2� 𝐵𝐵 

− ��
𝜅̇𝜅𝜏𝜏2

6
𝑠̇𝑠 +

𝜅𝜅𝜅𝜅𝜏̇𝜏
3

𝑠̇𝑠 +
𝜅𝜅𝜏𝜏2

6
𝑠̈𝑠 −

𝜅𝜅𝜏𝜏2

6
𝑠̇𝑠2 +

𝜅̇𝜅𝜏𝜏2

6
𝑠̇𝑠 +

𝜅𝜅𝜏̇𝜏
6

𝑠̇𝑠𝜏𝜏� 𝑠𝑠3

+ �
𝜅𝜅𝜏𝜏2

2
𝑠̇𝑠2 +

𝜅𝜅𝜏𝜏2

2
𝑠̇𝑠2� 𝑠𝑠2� 𝑁𝑁� 

 

Simplifying further: 

𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇: 
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝐵𝐵� =  

��
1
6

 (𝜅̈𝜅𝜏𝜏 + 2𝜅̇𝜅𝜏̇𝜏 + 𝜅𝜅𝜏̈𝜏)𝑠𝑠3 + �(𝜅̇𝜅𝜏𝜏 + 𝜅𝜅𝜏̇𝜏)𝑠̇𝑠 +
𝜅𝜅𝜅𝜅
2

𝑠̈𝑠� 𝑠𝑠2 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2� 𝐵𝐵 

− �
1
6

(𝜅̇𝜅𝜏𝜏2𝑠̇𝑠 + 2𝜅𝜅𝜅𝜅𝜏̇𝜏𝑠̇𝑠 + 𝜅𝜅𝜏𝜏2𝑠̈𝑠 − 𝜅𝜅𝜏𝜏2𝑠̇𝑠2 + 𝜅̇𝜅𝜏𝜏2𝑠̇𝑠 + 𝜅𝜅𝜏̇𝜏𝑠̇𝑠𝜏𝜏)𝑠𝑠3 + 𝜅𝜅𝜏𝜏2𝑠̇𝑠2𝑠𝑠2� 𝑁𝑁� 

 

Therefore, the final acceleration result is: 

𝑎𝑎 =
𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑠𝑠𝑠𝑠) +
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅
2

𝑠𝑠2𝑁𝑁� +
𝑑𝑑2

𝑑𝑑𝑡𝑡2 �
𝜅𝜅𝜅𝜅
6

𝑠𝑠3𝐵𝐵� = 
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𝑎𝑎 = (  (1 − 𝑠𝑠𝑠̈𝑠𝜅𝜅2)𝑠̈𝑠𝑇𝑇 + 2𝑠̇𝑠2𝜅𝜅𝜅𝜅 + 𝜏𝜏𝜏𝜏 )

+ ��(𝜅̈𝜅𝑠̇𝑠𝜅𝜅 + 𝜅̇𝜅) �−
1
2

𝑠𝑠2� + (𝑠̇𝑠2𝜅𝜅2 + 𝜅𝜅𝑠̇𝑠)(−𝑠𝑠)� 𝑇𝑇

+ �(𝜅̈𝜅 − 𝜅𝜅3𝑠̇𝑠 − 𝜅𝜅𝜏𝜏2 𝑠̇𝑠)
1
2

𝑠𝑠2 + 2𝑠𝑠𝜅̇𝜅𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 + 𝜅𝜅𝜅𝜅𝑠̈𝑠� 𝑁𝑁

+ ��
𝜅̈𝜅
2

𝑠𝑠𝑠̇𝑠 + 𝜅𝜅𝑠̇𝑠2 +
𝜅̇𝜅
2

𝑠𝑠 + 𝜅𝜅𝑠̇𝑠� 𝑠𝑠𝑠𝑠 +
𝜅𝜅
2

𝑠𝑠2𝜏̇𝜏� 𝐵𝐵�

+ ��
1
6

 (𝜅̈𝜅𝜏𝜏 + 2𝜅̇𝜅𝜏̇𝜏 + 𝜅𝜅𝜏̈𝜏)𝑠𝑠3 + �(𝜅̇𝜅𝜏𝜏 + 𝜅𝜅𝜏̇𝜏)𝑠̇𝑠 +
𝜅𝜅𝜅𝜅
2

𝑠̈𝑠� 𝑠𝑠2 + 𝜅𝜅𝜅𝜅𝜅𝜅𝑠̇𝑠2� 𝐵𝐵 

− �
1
6

(𝜅̇𝜅𝜏𝜏2𝑠̇𝑠 + 2𝜅𝜅𝜅𝜅𝜏̇𝜏𝑠̇𝑠 + 𝜅𝜅𝜏𝜏2𝑠̈𝑠 − 𝜅𝜅𝜏𝜏2𝑠̇𝑠2 + 𝜅̇𝜅𝜏𝜏2𝑠̇𝑠 + 𝜅𝜅𝜏̇𝜏𝑠̇𝑠𝜏𝜏)𝑠𝑠3 + 𝜅𝜅𝜏𝜏2𝑠̇𝑠2𝑠𝑠2� 𝑁𝑁� 

 

A.2 Source Code Chapter 5: MDC Geometric Formulation Implementation 

 
clear; close all; clc 
%Google Earth Data 
 load('GPS1Xft.mat'); 
load('GPS1Yft.mat'); 
 x2 = GPSX; y2 = GPSY; 
 x2 = x2'*.3048; y2 = y2'*.3048; 
%GPS DATA 
% load('CVF9LatX.mat'); 
load('CVF9LongY.mat'); 
% x2 = LatX'; y2 = LongY';  
%Ideal AASHTO 
% load('MichXm.mat'); 
load('MichYm.mat');   
% x2 = xm'; y2 = ym'; 
x2 = unique(x2,'stable'); 
y2 = unique(y2,'stable'); 
x2 = x2(1:numel(y2));X = [x2',y2']; 
[L2,R2,K2] = curvature(X); 
figure(1); plot(L2,R2); grid on; 
title('Curvature radius \rho vs. 
Cumulative curve length') 
%The Radius of Curvature is High at 
the Ends and Small at the middle 
%Which is opposite for the 
Curvature Kappa 
xlabel('Length of Road'); 
ylabel('Radius \rho') 
figure(2); 
h = plot(x2,y2); grid on; axis 
equal; set(h,'marker','.'); 
xlabel('X Coordinate'); ylabel('Y 
Coordinate') 

title('Road with Curvature 
Vectors') 
hold on 
quiver(x2',y2',K2(:,1),K2(:,2)); 
hold off 
% figure(3); hold on; 
% 
plot(x2,sqrt(K2(:,2).^2+K2(:,1).^2)
) 
% xlabel('X-Coordinate'); 
ylabel('Curvature \kappa'); grid 
on; 
% title('Curvature \kappa vs X 
Coordinate') 
% figure(4); hold on; 
% 
plot(y2,sqrt(K2(:,2).^2+K2(:,1).^2)
) 
% xlabel('Y-Coordinate'); 
ylabel('Curvature \kappa'); grid 
on; 
% title('Curvature \kappa vs Y 
Coordinate') 
  
KK = sqrt(K2(:,2).^2+K2(:,1).^2); 
figure(5); scatter(L2,KK); grid on 
xlabel('Lenght of Road'); 
ylabel('Curvature \kappa') 
title('Curvature \kappa vs. 
Cumulative curve length') 
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%  Smoothing Technique on 
Curvature---------------- 
figure(1050) 
x = L2; y = KK; 
yy1 = smooth(x,y,0.15,'loess');  
%Span of 15% 
yy2 = smooth(x,y,0.15,'rloess'); 
  
%subplot(2,1,1) 
plot(x,y,'b.',x,yy1,'r-'); 
ylim([0,.3]); grid on 
legend('Original data','Smoothed 
data using ''loess''',... 
       'Location','best') 
xlabel('Segment S (m)'); 
ylabel('Curvature K') 
%subplot(2,1,2) 
figure(1051) 
plot(x,y,'b.',x,yy2,'r-'); grid on;  
ylim([0,.3]) 
xlabel('Segment S (m)'); 
ylabel('Curvature K') 
legend('Original data','Smoothed 
Data',... 
       'Location','best') 
    
%------- 
[Th,n] = DiscInteg(K2,L2); 
figure(20) 
plot(L2(1:n),Th*180/pi); grid on 
xlabel('Segment S'); 
ylabel('Heading Angle \theta 
degrees') 
title('Numerically Integrated 
Heading \theta') 
%Note: This angle is in reference 
to the completely horizontal line  
% that was defined from the road 
design perpesctive 
  
figure(21) 
O = atand(K2(:,2)./K2(:,1)); 
plot(L2,O)  
xlabel('S'); ylabel('Angle from 
Inverse Tan') 
title('Angle from Inverse Tan') 
  
figure(22) 
[O1,O2] = direction(K2); 
figure(21); plot(L2,O1) 
xlabel('Segment S (m)'); 
ylabel('Angle from Inverse 
Tangent') 
title('Angle of Curvature 
Direction'); grid on; 
figure(22); plot(L2,O2) 

xlabel('Segment S (m)'); 
ylabel('Angle of Velocity Vector') 
title('Angle of Velocity 
Direction');  
grid on; 
%  Smoothing Technique on Angles---
------------- 
figure(1000) 
x = L2; y = O2; 
yy1 = smooth(x,y,0.15,'loess');  
%Span of 15% 
yy2 = smooth(x,y,0.15,'rloess'); 
  
%subplot(2,1,1) 
plot(x,y,'b.',x,yy1,'r-') 
legend('Original data','Smoothed 
data using ''loess''',... 
       'Location','SE') 
xlabel('Segment S (m)'); 
ylabel('Angle of Velocity Vector') 
%subplot(2,1,2) 
figure(1001) 
plot(x,y,'b.',x,yy2,'r-'); grid on 
xlabel('Segment S (m)'); 
ylabel('Angle of Velocity Vector') 
legend('Original data','Smoothed 
Data',... 
       'Location','SE') 
  
% -------- 
e1 = cosd(O2); e2 = sind(O2); 
figure(23) 
subplot(1,2,1) 
h1 = plot(x2,y2); grid on; axis 
equal; set(h1,'marker','.'); 
hold on; quiver(x2',y2',e1,e2); 
hold off 
%title('Road with Velocity 
Vectors') 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)'); 
  
  
% ---- smoothed data quiver 
subplot(1,2,2) 
e1 = cosd(yy2); e2 = sind(yy2); 
%figure(1002) 
h1 = plot(x2,y2); grid on; axis 
equal; set(h1,'marker','.'); 
hold on; quiver(x2',y2',e1,e2); 
hold off 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)'); 
  
% 
figure(30) 
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subplot(2,2,1) 
plot(L2,R2); grid on; 
title('\rho vs. S') 
xlabel S; ylabel('\rho') 
subplot(2,2,2) 
plot(x2,y2); grid on; hold on 
xlabel X; ylabel Y 
title('Road with Curvature 
Vectors') 
quiver(x2',y2',K2(:,1),K2(:,2)); 
hold off 
subplot(2,2,3) 
plot(L2,(sqrt(K2(:,2).^2+K2(:,1).^2
))) 
grid on; 
title('\kappa vs. S') 
xlabel S; ylabel('\kappa') 
subplot(2,2,4) 
plot(L2(1:n),Th*180/pi); grid on 
title('Integrated Heading \theta') 
xlabel S; ylabel('\theta') 
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A.3 Formulation Chapter 6: Geometric Trapezoid 

 The formulation of the mathematical curvature model was based on the shape of a 

trapezoid. This trapezoid consists of three different functions: An increasing linear slope, a 

constant slope, and a decreasing linear slope. To achieve a continuous and differentiable function 

containing the aforementioned parts, unit step functions were utilized. A minimum of five 

different values were determined to generate a general trapezoid to be fit with data. The choice 

of the shape values for the trapezoid are shown in Figure A.1, in which 𝑥𝑥1 through 𝑥𝑥4 are values 

defined by the segment length and 𝑥𝑥5 is defined by the curvature.  

 

 

Figure A.1 

 

 To create this model, step functions were needed to encompass the continuity of the three 

desired functions. Thus, the range of the available step functions for a trapezoid are such that: 

 

𝜅𝜅 = 𝐴𝐴[𝜑𝜑(𝑠𝑠 − 𝑥𝑥1) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥2)] + 𝐵𝐵[𝜑𝜑(𝑠𝑠 − 𝑥𝑥2) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥3)] + 𝐶𝐶[𝜑𝜑(𝑠𝑠 − 𝑥𝑥3) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥4)]   

 Eq XX 

Where 𝜑𝜑(𝑠𝑠 − 𝑎𝑎) = Unit Step Function with a shift of 𝑎𝑎 ∈ ℝ 
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 It was needed to geometrically obtain the coefficients of 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 such that all three 

together will constitute a continuous function. To find 𝐵𝐵, it was sufficient with the requirement 

of the segment being constant, such that 𝐵𝐵 = 𝑥𝑥5. With 𝐵𝐵 determined, 𝐴𝐴 and 𝐶𝐶 needed to be two 

linear functions connected through the value 𝑥𝑥5.  

 To obtain A, a linear increasing function is assumed. The formula for obtaining a linear 

function in terms of the allowed values is:  

 

𝐴𝐴 = �
𝑥𝑥5

𝑥𝑥2 − 𝑥𝑥1
� 𝑠𝑠 − 𝑑𝑑 

 

Where 𝑑𝑑 is a constant defining the vertical intercept of the function below the horizontal axis. To 

describe the vertical intercept in terms of the allowed values, the angle 𝜃𝜃 in between the first 

linear function and the vertical created by 𝑥𝑥2 had to be found. The angle 𝜃𝜃, and the required 

values to find it are shown in Figure A.2.  

 

 

Figure A.2 
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By geometric relations, the angle is found to be:  

𝜃𝜃 = tan−1 �
𝑥𝑥2 − 𝑥𝑥1

𝑥𝑥5
� = tan−1 �

𝑥𝑥1

𝑑𝑑
� 

 

Which can be used to find the following: 

𝑑𝑑 =
𝑥𝑥1𝑥𝑥5

𝑥𝑥2 − 𝑥𝑥1
 

 

By plugging the definition of the vertical intercept in the definition of 𝐴𝐴, the following is found: 

𝐴𝐴 = �
𝑥𝑥5

𝑥𝑥2 − 𝑥𝑥1
� 𝑠𝑠 −

𝑥𝑥1𝑥𝑥5

𝑥𝑥2 − 𝑥𝑥1
= �

𝑥𝑥5

𝑥𝑥2 − 𝑥𝑥1
� (𝑠𝑠 − 𝑥𝑥1) 

 

To obtain 𝐵𝐵, a similar approach is used, in which 𝐶𝐶 is modeled by a decreasing linear slope so 

that: 

𝐶𝐶 = �
𝑥𝑥5

𝑥𝑥4 − 𝑥𝑥3
� (−𝑠𝑠) + 𝑒𝑒 

Where 𝑒𝑒 is a constant defining the vertical intercept of the function. To describe the vertical 

intercept in terms of the allowed values, the angle 𝛽𝛽 in between the second linear function and 

the vertical created by 𝑥𝑥3 had to be found. The angle 𝛽𝛽, and the required values to find it are 

shown in Figure A.3.  
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Figure A.3 

 

By geometric relations, the angle is found to be:  

𝛽𝛽 = tan−1 �
𝑥𝑥4 − 𝑥𝑥3

𝑥𝑥5
� = tan−1 �

𝑥𝑥3

𝑒𝑒 − 𝑥𝑥5
� 

 

Which can be used to find the vertical intercept: 

𝑒𝑒 =
𝑥𝑥3𝑥𝑥5

𝑥𝑥4 − 𝑥𝑥3
+ 𝑥𝑥5 

 

By plugging the definition of the vertical intercept in the definition of 𝐶𝐶, the following is found: 

𝐶𝐶 = �
𝑥𝑥5

𝑥𝑥4 − 𝑥𝑥3
� (−𝑠𝑠) +

𝑥𝑥3𝑥𝑥5

𝑥𝑥4 − 𝑥𝑥3
+ 𝑥𝑥5 = �

𝑥𝑥5

𝑥𝑥4 − 𝑥𝑥3
� (−𝑠𝑠 + 𝑥𝑥3) + 𝑥𝑥5 

 

By plugging the values obtained for 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶, the following differentiable, continuous 

equation is found: 
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𝜅𝜅 = � 𝑥𝑥5
𝑥𝑥2−𝑥𝑥1

� (𝑠𝑠 − 𝑥𝑥1)[𝜑𝜑(𝑠𝑠 − 𝑥𝑥1) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥2)] + 𝑥𝑥5[𝜑𝜑(𝑠𝑠 − 𝑥𝑥2) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥3)] +

�� 𝑥𝑥5
𝑥𝑥4−𝑥𝑥3

� (−𝑠𝑠 + 𝑥𝑥3) + 𝑥𝑥5� [𝜑𝜑(𝑠𝑠 − 𝑥𝑥3) − 𝜑𝜑(𝑠𝑠 − 𝑥𝑥4)]     

 

A.4 Source Code Chapter 7: MDCR Optimization Implementation 

Curve Fitting Least Square Unstable Results 
clc; clear all; close all 
% From Section 5.1 on Paper 
% Investigation on the stability of 
the different M.X models proposed 
% and their behavior under ideal 
data with noise 
s = 1:.01:12; n = numel(s)-1; 
%y = [0 2 4.8 5.2 5 5.6]; 
y1 = 2.*s(1:n/2) - 1;   y2 = 
11*ones(1,n/2); 
y1o = awgn(y1,20,'measured'); y2o = 
awgn(y2,20,'measured'); 
  
y = [y1o y2o]; 
x0 = [0.9 2.9 6 max(y)]; 
% Find the "minimized error". 
fun1 = @(x,s) ((x(4)./(x(2)-
x(1))).*(s - x(1))).*(heaviside(s-
x(1)) - heaviside(s-x(2))) +... 
     x(4).*(heaviside(s-x(2))-
heaviside(s-x(3)));  
x = lsqcurvefit(fun1,x0,s(1:end-
1),y) 
times = linspace(s(1),s(end-1)); 
hold on; plot(s(1:end-1),y,'bo') 

plot(times,fun1(x,times),'k-
','linewidth',2) 
legend('Data','Fitted Response'); 
title('Data and Fitted Curve') 
xlim([times(1), times(end)+5]) 
  
x0 = [0.9 2.9 6 10 max(y)]; 
fun1 = @(x,s) ((x(5)./(x(2)-
x(1))).*(s - x(1))).*(heaviside(s-
x(1)) - heaviside(s-x(2))) +... 
     x(5).*(heaviside(s-x(2))-
heaviside(s-x(3))) + ... 
( ( x(5)./(x(4)-x(3))).*(-s+x(3))+ 
x(5) ).*(heaviside(s-x(3)) - 
heaviside(s-x(4)));  
  
x = lsqcurvefit(fun1,x0,s(1:end-
1),y) 
times = linspace(s(1),s(end-1)); 
figure 
hold on; plot(s(1:end-1),y,'bo') 
plot(times,fun1(x,times),'k-
','linewidth',2) 
legend('Data','Fitted Response'); 
title('Data and Fitted Curve') 
xlim([times(1), times(end)+5])

Curve Fitting Least Square with Noise 
clc; clear all; close all 
% Analysis on the performance of 
M.1 under different Gaussian Noise 
Levels 
% Behavior is good because even 
though there should be  
% a "drop" the function compensates 
and does not generate a drop 
%  Note: the function only behaves 
properly when the data 
% starts at 0 for y-axis 
s = 1:.01:25; 
%y = [0 2 4.8 5.2 5 5.6]; 
n = numel(s)-1; 
y1 = 2.*s(1:n/2) - 1; 

y2 = 23*ones(1,n/2); 
  
for k = 1:9 
  
y1o = awgn(y1,k,'measured'); 
y2o = awgn(y2,k,'measured'); 
  
y = [y1o y2o]; 
x0 = [0.9 2.9 4.89 7.85 11.50]; 
  
fun1 = @(x,s) ((x(5)./(x(2)-
x(1))).*(s - x(1))).*(heaviside(s-
x(1)) - heaviside(s-x(2))) +... 
     x(5).*(heaviside(s-x(2))-
heaviside(s-x(3))) + ... 
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( ( x(5)./(x(4)-x(3))).*(-s+x(3))+ 
x(5) ).*(heaviside(s-x(3)) - 
heaviside(s-x(4)));  
  
x = lsqcurvefit(fun1,x0,s(1:end-
1),y) 
times = linspace(s(1),s(end-1)); 
figure 
hold on; plot(s(1:end-1),y,'bo') 

plot(times,fun1(x,times),'k-
','linewidth',2) 
xlim([times(1), times(end)+5]) 
legend('Data','Fitted 
Response','location','best');  
title('Data and Fitted Curve'); 
grid on 
  
end 

 
Semi-Dynamic Routine 
%%%%-------------------------------
-------------- 
% 6-25-2020 
% This combines the research 
performed in 2 papers: 
% Jacome, R., Stolle, C. and 
Sweigard, M.,  
% “Road Curvature Decomposition for 
Autonomous Guidance,” SAE Technical 
Paper 
% 2020-01-1024, 2020, 
doi:10.4271/2020-01-1024. 
% And: 
% Citation Needed:::::: 
% For this SemiDynamic Routine to 
work 
% (1) Select your Data i.e. GPS, 
Google Earth, AASHTO, etc. 
% (2) Select a range that occupies 
one "curve segment" i.e. 
% when does curvature change 
considerably.  
% (3) Select appropiate Initial 
Conditions i.e. proportional to  
% segment length. 
% External files used: curvature.m 
direction.m 
%%%_-------------------------------
-------------- 
clear; close all; clc 
%Google Earth Data 
load('GPS1Xft.mat'); 
load('GPS1Yft.mat'); 
x2 = GPSX; y2 = GPSY; 
x2 = x2'*.3048; y2 = y2'*.3048; 
%GPS DATA 
% load('CVF9LatX.mat'); 
load('CVF9LongY.mat'); 
% x2 = LatX'; y2 = LongY';  
%Ideal AASHTO 
% load('IdealXm.mat'); 
load('IdealYm.mat');   
% x2 = xm'; y2 = ym'; 
x2 = unique(x2,'stable'); y2 = 
unique(y2,'stable'); 

x2 = x2(1:numel(y2)); 
X = [x2',y2']; 
[L,R,K] = curvature(X); 
K(1,:) = []; K(end,:) = []; 
L(1,:) = []; L(end,:) = []; 
xlabel('Length of Road (m)'); 
ylabel('Radius \rho (m)') 
figure(1); 
x2(1) = []; x2(end) = []; 
y2(1) = []; y2(end) = []; 
h = plot(x2,y2); grid on; axis 
equal; set(h,'marker','.'); 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)') 
title('Road with Curvature 
Vectors') 
hold on 
quiver(x2',y2',K(:,1),K(:,2)); hold 
off   
% ------------ 
y = sqrt(K(:,1).^2 + K(:,2).^2); 
s = L; 
%------- 
[O1,O2] = direction(K); 
e1 = cosd(O2); e2 = sind(O2); 
figure(200);hold on; h1 = 
plot(x2,y2); grid on; axis equal; 
set(h1,'marker','.','Linewidth',3); 
quiver(x2',y2',e1,e2); hold off 
%title('Road with Velocity 
Vectors') 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)'); 
figure; plot(s,y) 
%%% Road Section----- 
ni = 1; 
ne = numel(x2); 
% ni = 120; 
% ne = 180; 
figure; plot(x2(ni:ne),y2(ni:ne)); 
grid on; 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)'); 
figure; plot(s(ni:ne),y(ni:ne)); 



 

101 

grid on;xlabel('Segment Length s 
(m)'); ylabel('Curvature \kappa 
(m^{-1})') 
  
ySmoo = 
smooth(s(ni:ne),y(ni:ne),0.15,'loes
s'); 
sSmoo = s(ni:ne); 
figure; plot(sSmoo,ySmoo); grid on; 
xlabel('Segment Length s (m)'); 
ylabel('Curvature \kappa (m^{-1})') 
%----------------------------------
----------------------------- 
%From this point forward, I am 
doing the Optimization Semi-Dynamic 
Routine 
% Initial Conditions, NEVER repeat 
them. 
%Ideal AASHTO IC. 
%x0 = [ 100 200 300 400 
max(ySmoo)]; 
%Google Earth IC. 
  x0 = [3200 3500 4000 4200 
max(ySmoo)]; 
%------ 
%x0 = [750 850 900 1000 
max(ySmoo)]; 
%x0 = [.25*mean(sSmoo) 
0.5*mean(sSmoo) 1.25*mean(sSmoo) 
1.50*mean(sSmoo) max(sSmoo)]; 
%[sSmoo(1) 0.75*mean(sSmoo) 
1.25*mean(sSmoo) sSmoo(end) 
max(ySmoo)] 
%x0 = [1.25*sSmoo(1) mean(sSmoo) 
1.25*mean(sSmoo) .75*sSmoo(end) 
max(ySmoo)] 
%Note: Every single time, the x0 
need ot be modified to achieve the 
right 
%form 
% Curvature Model M.1 
M1 = @(x,s) ((x(5)./(x(2)-
x(1))).*(s - x(1))).*(heaviside(s-
x(1)) - heaviside(s-x(2))) +... 
     x(5).*(heaviside(s-x(2))-
heaviside(s-x(3))) + ... 
( ( x(5)./(x(4)-x(3))).*(-s+x(3))+ 
x(5) ).*(heaviside(s-x(3)) - 
heaviside(s-x(4)));  
% Pr.1 
fprintf('Pr. 1, Least Squares Min. 
Has finalized'); 
options = 
optimset('Display','off'); 
  

x = 
lsqcurvefit(M1,x0,sSmoo,ySmoo,[],[]
,options) 
snew = 
linspace(sSmoo(1),sSmoo(end),100); 
% <--- This defines the  
% size of the "K_vector". 
figure; hold on;  
plot(sSmoo,ySmoo,'bo'); 
plot(snew,M1(x,snew),'k-
','linewidth',2); 
xlim([snew(1), snew(end)+5]); 
legend('Data','Fitted 
Response','location','best');  
title('Data and Fitted Curve'); 
grid on 
xlabel('Segment Length s (m)'); 
ylabel('Curvature \kappa (m^{-1})') 
  
% ------------------------- 
%Parameters  
global K_temp e g mu 
% Road Only 
%e = 12; mu = 0.4; 
e = 6; mu = 0.3; 
% Both 
g = 9.81; K_vector = M1(x,snew); 
% ------------------------- 
%Iterative Optimization Routine for 
Pr.2 given Optimized M.1 
for i = 1:length(K_vector) 
K_temp = K_vector(i);   
% Objective Function Pr.2 
fun = @(x) x(1)^2*K_temp/g - (mu + 
0.01*e)/(1-0.01*mu*e) ;     
%C.1 (Bounds) 
lb = 30;  
%ub = [30,35]; 
ub = 38;  % 60 < x2 < 80; mph 
% There are no linear constraints, 
so set those arguments to |[]|.  
A = [];  b = []; % Linear In-
equality Constraints 
Aeq = []; beq = [];  % Linear 
Equality Constraints 
%Initial Conditions 
x0 = 1/4;   
%Constraints as an annoynomous 
function 
Op(i,:) = 
fmincon(fun,x0,A,b,Aeq,beq,lb,ub);   
end 
fprintf('Pr. 2 Has finalized \n'); 
figure; plot(snew,Op(:,1)) 
xlabel('Segment Length s (m)'); 
ylabel('Optimized Velocity (m/s)') 



 

102 

title('Segment Length vs Velocity 
Optimized'); grid on 
Optimization Contour 
clear all; clc; close all 
% Shown in Section 5.4 of Paper 
% From (Dixit 2009) 
% At Rho = 30 m -> U = 1.91 
% At Rho = 60 m -> U = 1.95 
y1 = linspace(-10,10); %Resonable 
Angles 
y2 = linspace(0,40); % Reasonable 
Speed Ranges (m/s) 
% 40 m/s ~ 90 mph ~ 144 km/hr 
L = 2.5; % m 

g = 9.81; % m/s^2 
%AASHTO values 
e = 6; mu = .4; 
U  = 1.95; K = 1/60; 
[X1,X2] = meshgrid(y1,y2); 
Z = X1 - (53.7*L+U*X2.^2)*K; 
figure; meshc(X1,X2,Z); hold on 
Z2 = - X2.^2*K/g + (mu + 
0.01*e)/(1-0.01*mu*e); 
meshc(X1,X2,Z2); colorbar;  
xlabel('y_1'); ylabel('y_2') 

 
Dynamic Routine Optimization
%%%%-------------------------------
-------------- 
% 6-25-2020 
% This combines the research 
performed in 2 papers: 
% Jacome, R., Stolle, C. and 
Sweigard, M.,  
% “Road Curvature Decomposition for 
Autonomous Guidance,” SAE Technical 
Paper 
% 2020-01-1024, 2020, 
doi:10.4271/2020-01-1024. 
% And: 
% Citation Needed:::::: 
% For this Dynamic Routine to work 
% (1) Select your Data i.e. GPS, 
Google Earth, AASHTO, etc. 
% (2) Select a range that occupies 
one "curve segment" i.e. 
% when does curvature change 
considerably.  
% (3) Select appropiate Initial 
Conditions i.e. proportional to  
% segment length. 
% External files used: curvature.m 
direction.m 
%%%_-------------------------------
-------------- 
clear; close all; clc 
%Google Earth Data 
load('GPS1Xft.mat'); 
load('GPS1Yft.mat'); 
x2 = GPSX; y2 = GPSY; 
x2 = x2'*.3048; y2 = y2'*.3048; 
%GPS DATA 
% load('CVF9LatX.mat'); 
load('CVF9LongY.mat'); 
% x2 = LatX'; y2 = LongY';  
%Ideal AASHTO 

% load('IdealXm.mat'); 
load('IdealYm.mat');   
% x2 = xm'; y2 = ym'; 
x2 = unique(x2,'stable'); y2 = 
unique(y2,'stable'); 
x2 = x2(1:numel(y2)); 
X = [x2',y2']; 
[L,R,K] = curvature(X); 
K(1,:) = []; K(end,:) = []; 
L(1,:) = []; L(end,:) = []; 
xlabel('Length of Road (m)'); 
ylabel('Radius \rho (m)') 
figure(1); 
x2(1) = []; x2(end) = []; 
y2(1) = []; y2(end) = []; 
h = plot(x2,y2); grid on; axis 
equal; set(h,'marker','.'); 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)') 
title('Road with Curvature 
Vectors') 
hold on 
quiver(x2',y2',K(:,1),K(:,2)); hold 
off   
% ------------ 
y = sqrt(K(:,1).^2 + K(:,2).^2); 
s = L; 
%------- 
[O1,O2] = direction(K); 
e1 = cosd(O2); e2 = sind(O2); 
figure(200);hold on; h1 = 
plot(x2,y2); grid on; axis equal; 
set(h1,'marker','.','Linewidth',3); 
quiver(x2',y2',e1,e2); hold off 
%title('Road with Velocity 
Vectors') 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)'); 
figure; plot(s,y); grid on; 
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xlabel('Segment Length s (m)'); 
ylabel('Curvature \kappa (m^{-1})') 
% Segment Length Selections 
% ni = 1; 
% ne = numel(x2); 
ni = 120; 
ne = 180; 
figure; plot(x2(ni:ne),y2(ni:ne)); 
grid on; 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)'); 
figure; plot(s(ni:ne),y(ni:ne)); 
grid on;xlabel('Segment Length s 
(m)'); ylabel('Curvature \kappa 
(m^{-1})') 
  
ySmoo = 
smooth(s(ni:ne),y(ni:ne),0.15,'loes
s'); 
sSmoo = s(ni:ne); 
figure; plot(sSmoo,ySmoo); grid on; 
xlabel('Segment Length s (m)'); 
ylabel('Curvature \kappa (m^{-1})') 
%----------------------------------
----------------------------- 
%From this point forward, I am 
doing the Optimization Dynamic 
Routine 
% Initial Conditions, NEVER repeat 
them. 
%Ideal AASHTO IC. 
%x0 = [ 100 200 300 400 
max(ySmoo)]; 
%Google Earth IC. 
 x0 = [3200 3500 4000 4200 
max(ySmoo)]; 
%x0 = [750 850 900 1000 
max(ySmoo)]; 
%[sSmoo(1) 0.75*mean(sSmoo) 
1.25*mean(sSmoo) sSmoo(end) 
max(ySmoo)] 
%x0 = [1.25*sSmoo(1) mean(sSmoo) 
1.25*mean(sSmoo) .75*sSmoo(end) 
max(ySmoo)] 
%Note: Every single time, the x0 
need ot be modified to achieve the 
right 
%form 
% Curvature Model M.1 
M1 = @(x,s) ((x(5)./(x(2)-
x(1))).*(s - x(1))).*(heaviside(s-
x(1)) - heaviside(s-x(2))) +... 
     x(5).*(heaviside(s-x(2))-
heaviside(s-x(3))) + ... 
( ( x(5)./(x(4)-x(3))).*(-s+x(3))+ 
x(5) ).*(heaviside(s-x(3)) - 
heaviside(s-x(4)));  

% Pr.1 
fprintf('Pr. 1, Least Squares Min. 
Has finalized \n'); 
options = 
optimset('Display','off'); 
  
  
x = 
lsqcurvefit(M1,x0,sSmoo,ySmoo,[],[]
,options) 
snew = 
linspace(sSmoo(1),sSmoo(end),100); 
% <--- This defines the  
% size of the "K_vector". 
figure; hold on;  
plot(sSmoo,ySmoo,'bo'); 
plot(snew,M1(x,snew),'k-
','linewidth',2); 
xlim([snew(1), snew(end)+5]); 
xlabel('Segment Length s (m)'); 
ylabel('Curvature \kappa (m^{-1})') 
legend('Data','Fitted 
Response','location','best');  
title('Data and Fitted Curve'); 
grid on 
  
% ------------------------- 
%Parameters  
global K_temp e g mu U 
% Vehicle Only 
L = 2.5;  %U = 1.95; 
U = 3; 
% Road Only 
%e = 12; mu = 0.4; 
e = 6; mu = 0.3; 
% Both 
g = 9.81; K_vector = M1(x,snew); 
% ------------------------- 
%Iterative Optimization Routine for 
Pr.2 given Optimized M.1 
for i = 1:length(K_vector) 
K_temp = K_vector(i);   
% Objective Function Pr.2 
fun = @(x)  x(1) - (53.7*L + 
U*x(2)^2/g)*K_temp;     
%C.1 (Bounds) 
lb = [-3,25]; % -3 < x1 < 3; 
%ub = [30,35]; 
ub = [3,36];  % 60 < x2 < 80; mph 
% There are no linear constraints, 
so set those arguments to |[]|.  
A = [];  b = []; % Linear In-
equality Constraints 
Aeq = []; beq = [];  % Linear 
Equality Constraints 
%Initial Conditions 
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x0 = [1/4,1/2];   
%Constraints as an annoynomous 
function 
nonlcon = @EqConstraint; 
options = 
optimoptions('fmincon','Display','o
ff'); 
Op(i,:) = 
fmincon(fun,x0,A,b,Aeq,beq,lb,ub,no
nlcon,options);   
end 
fprintf('Pr. 2 Has finalized \n'); 
figure; plot(snew,Op(:,2)) 
%title('Segment Length vs Velocity 
Optimized'); 

grid on 
xlabel('Segment Length s (m)'); 
ylabel('Optimized Velocity (m/s)')  
  
% Nonlinear Constaints (Not bounds) 
function [c,ceq] = EqConstraint(x) 
global K_temp e g mu  
%Pr.2 
% Nonlinear Inequality Constraints 
c = x(2)^2*K_temp/g - (mu + 
0.01*e)/(1-0.01*mu*e); 
% Nonlinear Equality Constraints 
ceq = []; 
end

 
Dynamic Routine with Ideal Noise
clear; close all; clc 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% 
% In this example, the noise is 
added to the ideal mathematical 
road 
% However, no smoothing is 
performed. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% 
%GPS DATA 
%load('CVF9LatX.mat'); 
load('CVF9LongY.mat'); 
%Ideal AASHTO 
load('IdealXm.mat'); 
load('IdealYm.mat'); 
%x2 = LatX'; y2 = LongY';    
x2 = xm'; y2 = ym'; 
x2 = unique(x2); y2 = unique(y2); 
x2 = x2(1:numel(y2)); 
% Added White Noise, and now 
everything "kinda" works, but not 
really 
x2 = awgn(x2,200,'measured'); 
y2 = awgn(y2,200,'measured'); 
  
X = [x2',y2']; 
[L,R,K] = curvature(X); 
K(1,:) = []; K(end,:) = []; L(1,:) 
= []; L(end,:) = []; 
x2(1) = []; x2(end) = []; y2(1) = 
[]; y2(end) = []; 
figure; scatter(x2,y2); 
xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)') 
title('Raw Road Data') 
figure; 
h = scatter(x2,y2); grid on; axis 
equal; set(h,'marker','.'); 

xlabel('X Coordinate (m)'); 
ylabel('Y Coordinate (m)') 
title('Road with Curvature 
Vectors') 
hold on 
  
quiver(x2',y2',K(:,1),K(:,2)); hold 
off   
y = sqrt(K(:,1).^2 + K(:,2).^2); 
s = L; 
figure; plot(s,y) 
% Initial Conditions, NEVER repeat 
them. 
x0 = [100 200 300 400 500]; 
% Curvature Model M.1 
M1 = @(x,s) ((x(5)./(x(2)-
x(1))).*(s - x(1))).*(heaviside(s-
x(1)) - heaviside(s-x(2))) +... 
     x(5).*(heaviside(s-x(2))-
heaviside(s-x(3))) + ... 
( ( x(5)./(x(4)-x(3))).*(-s+x(3))+ 
x(5) ).*(heaviside(s-x(3)) - 
heaviside(s-x(4)));  
% Pr.1 
fprintf('Pr. 1, Least Squares Min. 
Has finalized\n'); 
options = 
optimset('Display','off'); 
x = 
lsqcurvefit(M1,x0,s(1:end),y,[],[],
options) 
snew = linspace(s(1),s(end),100); % 
<--- This defines the  
% size of the "K_vector". 
figure; hold on;  
plot(s,y,'bo'); 
xlabel('S-Segment (m)'); ylabel 
('Curvature(m^{-1})'); 
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plot(snew,M1(x,snew),'k-
','linewidth',2); 
xlim([snew(1), snew(end)+5]); 
legend('Data','Fitted 
Response','location','best');  
title('Data and Fitted Curve'); 
grid on 
  
% ------------------------- 
%Parameters  
global K_temp e g mu U 
% Vehicle Only 
L = 2.5;  %U = 1.95; 
U = 3; 
% Road Only 
e = 6; mu = 0.3; 
% Both 
g = 9.81; K_vector = M1(x,snew); 
% ------------------------- 
%Iterative Optimization Routine for 
Pr.2 given Optimized M.1 
for i = 1:length(K_vector) 
K_temp = K_vector(i);   
% Objective Function Pr.2 
fun = @(x)  x(1) - (53.7*L + 
U*x(2)^2/g)*K_temp;     
%C.1 (Bounds) 
% lb = [-3,25];  
% ub = [3,60];  
lb = [-3,25]; % -3 < x1 < 3; 
ub = [3,35];  % 55 < x2 < 80; mph 
% There are no linear constraints, 
so set those arguments to |[]|.  
A = [];  b = []; % Linear In-
equality Constraints 
Aeq = []; beq = [];  % Linear 
Equality Constraints 
%Initial Conditions 

x0 = [1/4,1/4];   
%Constraints as an annoynomous 
function 
nonlcon = @EqConstraint; 
options = 
optimoptions('fmincon','Display','o
ff'); 
Op(i,:) = 
fmincon(fun,x0,A,b,Aeq,beq,lb,ub,no
nlcon,options);   
end 
fprintf('Pr. 2 Has finalized \n'); 
vOpt = Op(:,2); 
figure; 
plot(snew,vOpt,'linewidth',3) 
ylim([max(vOpt)-10 max(vOpt)+10]) 
title('Segment Length vs Velocity 
Optimized'); grid on 
xlabel('S-Segment (m)'); ylabel 
('Velocity (m/s)'); 
figure; plot(M1(x,snew),vOpt) 
ylim([max(vOpt)-10 max(vOpt)+10]) 
title('Curvature vs Velocity 
Optimized'); grid on; 
xlabel('S-Segment (m)'); ylabel 
('Curvature(m^{-1})'); 
  
% Nonlinear Constaints (Not bounds) 
function [c,ceq] = EqConstraint(x) 
global K_temp e g mu  
%Pr.2 
% Nonlinear Inequality Constraints 
c = x(2)^2*K_temp/g - (mu + 
0.01*e)/(1-0.01*mu*e); 
% Nonlinear Equality Constraints 
ceq = []; 
end
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